937,144 research outputs found

    Chaotic particle swarm optimization with neural network structure and its application

    Get PDF
    Abstract: A new particle swarm optimization (PSO) algorithm having a chaotic Hopfield Neural Network (HNN) structure is proposed. Particles exhibit chaotic behaviour before converging to a stable fixed point which is determined by the best points found by the individual particles and the swarm. During the evolutionary process, the chaotic search expands the search space of individual particles. Using a chaotic system to determine particle weights helps the PSO to escape from the local extreme and find the global optimum. The algorithm is applied to some benchmark problems and a pressure vessel problem with nonlinear constraints. The results show that the proposed algorithm consistently outperforms rival algorithms by enhancing search efficiency and improving search qualit

    Neural Network Control of a Laboratory Magnetic Levitator

    Get PDF
    Magnetic levitation (maglev) systems are nowadays employed in applications ranging from non-contact bearings and vibration isolation of sensitive machinery to high-speed passenger trains. In this chapter a mathematical model of a laboratory maglev system was derived using the Lagrangian approach. A linear pole-placement controller was designed on the basis of specifications on peak overshoot and settling time. A 3-layer feed-forward Artificial Neural Network (ANN) controller comprising 3-input nodes, a 5-neuron hidden layer, and 1-neuron output layer was trained using the linear state feedback controller with a random reference signal. Simulations to investigate the robustness of the ANN control scheme with respect to parameter variations, reference step input magnitude variations, and sinusoidal input tracking were carried out using SIMULINK. The obtained simulation results show that the ANN controller is robust with respect to good positioning accuracy

    The neural network art which uses the Hamming distance to measure an image similarity score

    Get PDF
    This study reports a new discrete neural network of Adaptive Resonance Theory (ART-1H) in which the Hamming distance is used for the first time to estimate the measure of binary images (vectors) proximity. For the development of a new neural network of adaptive resonance theory, architectures and operational algorithms of discrete neural networks ART-1 and discrete Hamming neural networks are used. Unlike the discrete neural network adaptive resonance theory ART-1 in which the similarity parameter which takes into account single images components only is used as a measure of images (vectors) proximity in the new network in the Hamming distance all the components of black and white images are taken into account. In contrast to the Hamming network, the new network allows the formation of typical vector classes representatives in the learning process not using information from the teacher which is not always reliable. New neural network can combine the advantages of the Hamming neural network and ART-1 by setting a part of source information in the form of reference images (distinctive feature and advantage of the Hamming neural network) and obtaining some of typical image classes representatives using learning algorithms of the neural network ART-1 (the dignity of the neural network ART-1). The architecture and functional algorithms of the new neural network ART which has the properties of both neural network ART-1 and the Hamming network were proposed and investigated. The network can use three methods to get information about typical image classes representatives: teacher information, neural network learning process, third method uses a combination of first two methods. Property of neural network ART-1 and ART-1H, related to the dependence of network learning outcomes or classification of input information to the order of the vectors (images) can be considered not as a disadvantage of the networks but as a virtue. This property allows to receive various types of input information classification which cannot be obtained using other neural networks

    Model migration neural network for predicting battery aging trajectories

    Get PDF
    Accurate prediction of batteries’ future degradation is a key solution to relief users’ anxiety on battery lifespan and electric vehicle’s driving range. Technical challenges arise from the highly nonlinear dynamics of battery aging. In this paper, a feed-forward migration neural network is proposed to predict the batteries’ aging trajectories. Specifically, a base model that describes the capacity decay over time is first established from the existed battery aging dataset. This base model is then transformed by an input-output slope-and-bias-correction (SBC) method structure to capture the degradation of target cell. To enhance the model’s nonlinear transfer capability, the SBC-model is further integrated into a four-layer neural network, and easily trained via the gradient correlation algorithm. The proposed migration neural network is experimentally verified with four different commercial batteries. The predicted RMSEs are all lower than 2.5% when using only the first 30% of aging trajectories for neural network training. In addition, illustrative results demonstrate that a small size feed-forward neural network (down to 1-5-5-1) is sufficient for battery aging trajectory prediction

    A VLSI Neural Network for Color Constancy

    Get PDF
    A system for color correction has been designed, built, and tested successfully; the essential components are three custom chips built using sub-threshold analog CMOS VLSI. The system, based on Land's Retinex theory of color constancy, produces colors similar in many respects to those produced by the visual system. Resistive grids implemented in analog VLSI perform the smoothing operation central to the algorithm at video rates. With the electronic system, the strengths and weaknesses of the algorithm are explored

    Neural Network Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area