244 research outputs found

    Ein Beitrag zum ganzheitlichen Engineneering von elektrischen Servoantriebssystemen

    Get PDF
    Das Engineering von elektrischen Antriebssystemen beinhaltet zur Erfüllung vielfältiger wirtschaftlicher und technischer Anforderungen diverse Herausforderungen. Die Arbeit stellt eine Entwicklung und Umsetzung einer ganzheitlichen Betrachtung der zu lösenden Teilaufgaben dar. Hierzu wird ein neuartiges Konzept entwickelt und anschließend algorithmisch umgesetzt. Durch die Erprobung an typischen Anwendungen und einer Modellmaschine wird der Mehrwert der neuen Vorgehensweise belegt

    Eine Komponentenarchitektur zur Integration heterogener Modellierungswerkzeuge

    Get PDF

    Modellierung und Verifikation von verteilten/parallelen Informationssystemen

    Get PDF
    Petri nets are used in many fields as modelling technique. The different usage areas and modelling objectives require different classes of Petri nets. Powerful high level Petri nets and especially coloured Petri nets are well suited for describing behavior of distributed information systems in order to verify and analyse them. Extended coloured Petri nets with structured marks are presented in this work. An example is used in order to demonstrate the analysis and verification steps. This example algorithm is modeled with extended coloured Petri nets (HCPN-ST). It is transformed into coloured Petri nets, in order to simulate, analyse and verify the method with existing software tools. The model is simulated and analysed with PENECA Chromos tool, although it cannot verify all properties, but it allows to interoperate with INA tool. The remainder of the analysis and verification is done in the INA tool. The above mentioned steps are extended and integrated into the complete analysis process and the verification methodology. Finally, the need and motivation for the extension of dynamic approaches modelling for the analysis of distributed information system is elaborated to accomplish the goal of the work. We succeed to validate, that the extended formal method is an effective method to model and analyse distributed information systems.Petrinetze werden in vielen Bereichen als Modellierungstechnik verwendet. Die verschiedenen Einsatzgebiete und Modellierungsziele erfordern mittel unterschiedliche Typen von Petrinetzen. Die höheren Petrinetze eignen sich gut zur Formalisierung des Verhaltens verteilter Informationssysteme zum Zweck der Verifikation und Analyse. Eine Klasse erweiterter gefärbte Petrinetze (HCPN-ST) mit strukturierten Marken wird in dieser Arbeit vorgestellt und am Beispiel erläutert. An diesem konkreten Modell wird die Analyse und Verifikation demonstriert. Das Beispiel-Algorithmenmodell wird in ein CPN transformiert. Der Algorithmus der Transformation wird vorgestellt. Diese Transformation wird durchgeführt, um die erweiterte Methode mit Software -Tools zu analysieren und verifizieren. Mit Peneca Chromos wird das Modell editiert und simuliert und einige Eigenschaften werden analysiert. Die weitere Analyse und Verifikation erfolgt mit dem Tool INA. Es folgt die Erweiterung und Integration in den gesamten Analyseprozess und die Verifikationsmethodik. Abschließend wird die Notwendigkeit und Motivation zur Erweiterung von dynamischen Modellierungsansätzen für die Analyse von verteilten Informationssystemen behandelt und damit die Zielstellung der Arbeit erreicht

    Fairneß, Randomisierung und Konspiration in verteilten Algorithmen

    Get PDF
    Fairneß (d.h. faire Konfliktlösung), Randomisierung (d.h. Münzwürfe) und partielle Synchronie sind verschiedene Konzepte, die häufig zur Lösung zentraler Synchronisations- und Koordinationsprobleme in verteilten Systemen verwendet werden. Beispiele für solche Probleme sind das Problem des wechselseitigen Ausschlusses (kurz: Mutex-Problem) sowie das Konsens-Problem. Für einige solcher Probleme wurde bewiesen, daß ohne die oben genannten Konzepte keine Lösung für das betrachtete Problem existiert. Unmöglichkeitsresultate dieser Art verbessern unser Verständnis der Wirkungsweise verteilter Algorithmen sowie das Verständnis des Trade-offs zwischen einem leicht analysierbaren und einem ausdrucksstarken Modell für verteiltes Rechnen. In dieser Arbeit stellen wir zwei neue Unmöglichkeitsresultate vor. Darüberhinaus beleuchten wir ihre Hintergründe. Wir betrachten dabei Modelle, die Randomisierung einbeziehen, da bisher wenig über die Grenzen der Ausdrucksstärke von Randomisierung bekannt ist. Mit einer Lösung eines Problems durch Randomisierung meinen wir, daß das betrachtete Problem mit Wahrscheinlichkeit 1 gelöst wird. Im ersten Teil der Arbeit untersuchen wir die Beziehung von Fairneß und Randomisierung. Einerseits ist bekannt, daß einige Probleme (z.B. das Konsens- Problem) durch Randomisierung nicht aber durch Fairneß lösbar sind. Wir zeigen nun, daß es andererseits auch Probleme gibt (nämlich das Mutex-Problem), die durch Fairneß, nicht aber durch Randomisierung lösbar sind. Daraus folgt, daß Fairneß nicht durch Randomisierung implementiert werden kann. Im zweiten Teil der Arbeit verwenden wir ein Modell, das Fairneß und Randomisierung vereint. Ein solches Modell ist relativ ausdrucksstark: Es erlaubt Lösungen für das Mutex-Problem, das Konsens-Problem, sowie eine Lösung für das allgemeine Mutex-Problem. Beim allgemeinen Mutex-Problem (auch bekannt als Problem der speisenden Philosophen) ist eine Nachbarschaftsrelation auf den Agenten gegeben und ein Algorithmus gesucht, der das Mutex-Problem für jedes Paar von Nachbarn simultan löst. Schließlich betrachten wir das ausfalltolerante allgemeine Mutex-Problem -- eine Variante des allgemeinen Mutex-Problems, bei der Agenten ausfallen können. Wir zeigen, daß sogar die Verbindung von Fairneß und Randomisierung nicht genügt, um eine Lösung für das ausfalltolerante allgemeine Mutex-Problem zu konstruieren. Ein Hintergrund für dieses Unmöglichkeitsresultat ist ein unerwünschtes Phänomen, für das in der Literatur der Begriff Konspiration geprägt wurde. Konspiration wurde bisher nicht adäquat charakterisiert. Wir charakterisieren Konspiration auf der Grundlage nicht-sequentieller Abläufe. Desweiteren zeigen wir, daß Konspiration für eine große Klasse von Systemen durch die zusätzliche Annahme von partieller Synchronie verhindert werden kann, d.h. ein konspirationsbehaftetes System kann zu einem randomisierten System verfeinert werden, das unter Fairneß und partieller Synchronie mit Wahrscheinlichkeit 1 konspirationsfrei ist. Partielle Synchronie fordert, daß alle relativen Geschwindigkeiten im System durch eine Konstante beschränkt sind, die jedoch den Agenten nicht bekannt ist. Die Darstellung der Unmöglichkeitsresultate und die Charakterisierung von Konspiration wird erst durch die Verwendung nicht-sequentieller Abläufe möglich. Ein nicht-sequentieller Ablauf repräsentiert im Gegensatz zu einem sequentiellen Ablauf kausale Ordnung und nicht zeitliche Ordnung von Ereignissen. Wir entwickeln in dieser Arbeit eine nicht-sequentielle Semantik für randomisierte verteilte Algorithmen, da es bisher keine in der Literatur gibt. In dieser Semantik wird kausale Unabhängigkeit durch stochastische Unabhängigkeit widergespiegelt.Concepts such as fairness (i.e., fair conflict resolution), randomization (i.e., coin flips), and partial synchrony are frequently used to solve fundamental synchronization- and coordination-problems in distributed systems such as the mutual exclusion problem (mutex problem for short) and the consensus problem. For some problems it is proven that, without such concepts, no solution to the particular problem exists. Impossibilty results of that kind improve our understanding of the way distributed algorithms work. They also improve our understanding of the trade-off between a tractable model and a powerful model of distributed computation. In this thesis, we prove two new impossibility results and we investigate their reasons. We are in particular concerned with models for randomized distributed algorithms since little is yet known about the limitations of randomization with respect to the solvability of problems in distributed systems. By a solution through randomization we mean that the problem under consideration is solved with probability 1. In the first part of the thesis, we investigate the relationship between fairness and randomization. On the one hand, it is known that to some problems (e.g. to the consensus problem), randomization admits a solution where fairness does not admit a solution. On the other hand, we show that there are problems (viz. the mutex problem) to which randomization does not admit a solution where fairness does admit a solution. These results imply that fairness cannot be implemented by coin flips. In the second part of the thesis, we consider a model which combines fairness and randomization. Such a model is quite powerful, allowing solutions to the mutex problem, the consensus problem, and a solution to the generalized mutex problem. In the generalized mutex problem (a.k.a. the dining philosophers problem), a neighborhood relation is given and mutual exclusion must be achieved for each pair of neighbors. We finally consider the crash-tolerant generalized mutex problem where every hungry agent eventually becomes critical provided that neither itself nor one of its neighbors crashes. We prove that even the combination of fairness and randomization does not admit a solution to the crash-tolerant generalized mutex problem. We argue that the reason for this impossibility is the inherent occurrence of an undesirable phenomenon known as conspiracy. Conspiracy was not yet properly characterized. We characterize conspiracy on the basis of non-sequential runs, and we show that conspiracy can be prevented by help of the additional assumption of partial synchrony, i.e., we show that every conspiracy-prone system can be refined to a randomized system which is, with probability 1, conspiracy-free under the assumptions of partial synchrony and fairness. Partial synchrony means that each event consumes a bounded amount of time where, however, the bound is not known. We use a non-sequential semantics for distributed algorithms which is essential to some parts of the thesis. In particular, we develop a non-sequential semantics for randomized distributed algorithms since there is no such semantics in the literature. In this non-sequential semantics, causal independence is reflected by stochastic independence

    Strukturen und Werkzeuge für eine durch das Anlagenpersonal modifizierbare und ergänzbare Petrinetzanlagensteuerung

    Get PDF
    Die Zielsetzung dieser Arbeit ist ein System, das den Rückgriff auf den Systementwickler für den Nutzer einer Fertigungsanlage auch bei Produktänderungen, Maschinenveränderungen und neu einzufügender automatischer Fehlerhandhabung möglichst weitgehend überflüssig macht. Das System soll auf die in der Praxis vorkommenden Fertigungsstrukturen anwendbar sein. Dazu gehören Fertigungsanjagen mit bzw. ohne Routing-Flexibilität, mit über beschränkte Puffer oder unmittelbar zwischen Maschinen realisiertem Werkstücktransport, mit mehreren Auftragstypen bzw. Produkt-Varianten, mit Montage- bzw. Demontageaktivitäten sowie mit fehlerbehafteten Abläufen. Aus der Anforderung der Umsetzung einfacher Spezifikationen in Petrinetze folgt die Zielsetzung der Abbildung des Wissens eines Petrinetzexperten in die Form eines (wissensbasierten) Programmes. Die grundsätzliche Realisierbarkeit eines solchen Programmes erscheint deshalb plausibel, weil ein Petrinetzexperte bei der Generierung eines Petrinetzes aus Spezifikationen der Fertigungsfachleute nach bestimmten Generierungsregeln vorgeht. Die Schwierigkeit ist, daß die von einem Petrinetzfachmann „benutzten“ Regeln und sonstigen Modelle zunächst nur implizit als Expertenwissen vorhanden sind. Eine Umsetzung in ein Programm erfordert die Ermittlung der Regeln in expliziter Form und eine Modellierung des nicht-regelbasierten deskriptiven Wissens sowie eine Strukturierung dieses Wissens sowie der Petrinetzmodellierung. D.h. zunächst muß gefragt werden, wie wir als Petrinetzexperten aus einer Spezifikation eines Facharbeiters oder Betriebsingenieurs ein Petrinetz generieren. Die Ergebnisse der hierzu durchgeführten Untersuchungen und das daraus entwickelte und implementierte Programmsystem sind Gegenstand von Kapitel 2, ebenso wie ein exemplarischer Fertigungsprozeß, eine Softwareduplizierzelle (Testzelle), die zur Verifizierung der Ansätze und zur Illustration der Einzelschritte in dieser Arbeit dient. Das in Kapitel 2 dargestellte Programmsystem generiert übersichtliche Petrinetze basierend auf einer Aufspaltung in eine vom Systemingenieur zu implementierende Anlagenbeschreibung und eine vom Facharbeiter vorgebbare Anlagennutzung. Es werden die auf der Ebene der Anlagenbeschreibung und der Ebene der Petrinetz-Anlagensteuerung notwendigen Informationen und geeigneten Basis-Strukturen erläutert. Darüberhinaus wird zur verbesserten Strukturierung und Steigerung der Übersichtlichkeit der Petrinetz-Anlagensteuerung in Kapitel 3 ein neu entwickeltes Verfahren zur automatischen Bildung hierarchischer Petrinetze erläutert. Scheduling-Algorithmen und Verklemmungsbehebungsverfahren für die generierten Petrinetze werden anschließend in Kapitel 4 beschrieben. Hier werden lokale Suchverfahren erläutert und mit einigen heuristischen Prioritätsregeln verglichen, die optimierte Schaltfolgen zur Überführung eines Petrinetzes von einer Anfangs- in eine Zielmarkierung ermitteln. Das in dieser Arbeit gewählte Optimierungskriterium ist der Makespan. Als Basis dienen Petrinetzmodelle, die für das Scheduling durch das Petrinetzgenerierungssystem ebenfalls automatisch erzeugt werden und sich von den Petrinetzen zur Steuerung im wesentlichen dadurch unterscheiden, daß die den Fertigungs- und Transportoperationen zugeordneten Ausführungszeiten im Petrinetz modelliert und somit die Rückmeldungen der unterlagerten Ebenen an die Petrinetzsteuerung (z.B. „Operation fertig“) durch die Zeitbewertungen ersetzt werden. Kapitel 5 faßt die Arbeit zusammen und bewertet die Ergebnisse
    corecore