1,656 research outputs found

    Which Way Was I Going? Contextual Retrieval Supports the Disambiguation of Well Learned Overlapping Navigational Routes

    Get PDF
    Groundbreaking research in animals has demonstrated that the hippocampus contains neurons that distinguish betweenoverlapping navigational trajectories. These hippocampal neurons respond selectively to the context of specific episodes despite interference from overlapping memory representations. The present study used functional magnetic resonanceimaging in humans to examine the role of the hippocampus and related structures when participants need to retrievecontextual information to navigate well learned spatial sequences that share common elements. Participants were trained outside the scanner to navigate through 12 virtual mazes from a ground-level first-person perspective. Six of the 12 mazes shared overlapping components. Overlapping mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required the retrieval of contextual information relevant to thecurrent navigational episode. Results revealed greater activation during the successful navigation of the overlapping mazes compared with the non-overlapping mazes in regions typically associated with spatial and episodic memory, including thehippocampus, parahippocampal cortex, and orbitofrontal cortex. When combined with previous research, the current findings suggest that an anatomically integrated system including the hippocampus, parahippocampal cortex, and orbitofrontal cortexis critical for the contextually dependent retrieval of well learned overlapping navigational routes

    Functional MRI investigations of overlapping spatial memories and flexible decision-making in humans

    Full text link
    Thesis (Ph.D.)--Boston UniversityResearch in rodents and computational modeling work suggest a critical role for the hippocampus in representing overlapping memories. This thesis tested predictions that the hippocampus is important in humans for remembering overlapping spatial events, and that flexible navigation of spatial routes is supported by key prefrontal and striatal structures operating in conjunction with the hippocampus. The three experiments described in this dissertation used functional magnetic resonance imaging (fMRI) in healthy young people to examine brain activity during context-dependent navigation of virtual maze environments. Experiment 1 tested whether humans recruit the hippocampus and orbitofrontal cortex to successfully retrieve well-learned overlapping spatial routes. Participants navigated familiar virtual maze environments during fMRI scanning. Brain activity for flexible retrieval of overlapping spatial memories was contrasted with activity for retrieval of distinct non-overlapping memories. Results demonstrate the hippocampus is more strongly recruited for planning and retrieval of overlapping routes than non-overlapping routes, and the orbitofrontal cortex is recruited specifically for context-dependent navigational decisions. Experiment 2 examined whether the hippocampus, orbitofrontal cortex, and striatum interact cooperatively to support flexible navigation of overlapping routes. Using a functional connectivity analysis of fMRI data, we compared interactions between these structures during virtual navigation of overlapping and non-overlapping mazes. Results demonstrate the hippocampus interacts with the caudate more strongly for navigating overlapping than non-overlapping routes. Both structures cooperate with the orbitofrontal cortex specifically during context-dependent decision points, suggesting the orbitofrontal cortex mediates translation of contextual information into the flexible selection of behavior. Experiment 3 examined whether the hippocampus and caudate contribute to forming context-dependent memories. fMRI activity for learning new virtual mazes which overlap with familiar routes was compared with activity for learning completely distinct routes. Results demonstrate both the hippocampus and caudate are preferentially recruited for learning mazes which overlap with existing route memories. Furthermore, both areas update their responses to familiar route memories which become context-dependent, suggesting complementary roles in both learning and updating overlapping representations. Together, these studies demonstrate that navigational decisions based on overlapping representations rely on a network incorporating hippocampal function with the evaluation and selection of behavior in the prefrontal cortex and striatum

    Creativity and the Brain

    Get PDF
    Neurocognitive approach to higher cognitive functions that bridges the gap between psychological and neural level of description is introduced. Relevant facts about the brain, working memory and representation of symbols in the brain are summarized. Putative brain processes responsible for problem solving, intuition, skill learning and automatization are described. The role of non-dominant brain hemisphere in solving problems requiring insight is conjectured. Two factors seem to be essential for creativity: imagination constrained by experience, and filtering that selects most interesting solutions. Experiments with paired words association are analyzed in details and evidence for stochastic resonance effects is found. Brain activity in the process of invention of novel words is proposed as the simplest way to understand creativity using experimental and computational means. Perspectives on computational models of creativity are discussed

    Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives

    Full text link
    A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-Ă -vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409); National Institute of Mental Health (R01 DC02852

    Embodied cognitive evolution and the cerebellum

    Get PDF
    Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences—including tool use and language. There is no clear separation between sensory–motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control

    The cerebellar role in Executive Functions:new insights from behavioral and structural neuroimaging data

    Get PDF
    “Executive functions” (EFs) are a set of cognitive processes that allow to select and monitor behaviours to achieve specific goals. Although it has been proposed that the cerebellum is involved in EFs by means of specific anatomical connections with the lateral prefrontal cortex, its specific role in these processes needs to be clarified. Aim of the present study was to investigate the EFs in subject with cerebellar pathology to characterize their profile of executive impairment. Twenty-three patients with cerebellar atrophy (CA), 18 patients with focal cerebellar damage (FCD), and 43 matched healthy controls (CT) were enrolled in the study and underwent an extensive evaluation of the EFs. A one-way Anova and Tukey’s post hoc test were performed. Moreover a principal components analysis with 3 factors (Planning, Set shifting and Cognitive Inhibition) was executed to identify possible shared process among impaired EFs tasks. Finally, in order to investigate the link between executive impairment and the pattern of cerebellar structural alterations, T1 weighted scans were also collected for voxel-based morphometry analysis and cerebellar lesion characterization. The neuropsychological assessment evidenced that CA was significantly impaired in planning tasks while FCD was significantly impaired in set shifting tasks. By using the neuroimaging analysis, the damaged cerebellar regions have been identified in CA and FCD. The structural alteration patterns have been related to the executive impairment patterns. The hypothesis that, in presence of a cerebellar pathology, different profiles of EFs alteration depend on cerebellar damage localization will be discussed

    Building an adaptive brain across development: targets for neurorehabilitation must begin in infancy

    Get PDF
    Much progress has been made toward behavioural and pharmacological intervention in intellectual disability, which was once thought too difficult to treat. Down syndrome research has shown rapid advances, and clinical trials are currently underway, with more on the horizon. Here, we review the literature on the emergent profile of cognitive development in Down syndrome, emphasizing that treatment approaches must consider how some “end state” impairments, such as language deficits, may develop from early alterations in neural systems beginning in infancy. Specifically, we highlight evidence suggesting that there are pre- and early postnatal alterations in brain structure and function in Down syndrome, resulting in disturbed network function across development. We stress that these early alterations are likely amplified by Alzheimer’s disease progression and poor sleep. Focusing on three network hubs (prefrontal cortex, hippocampus, and cerebellum), we discuss how these regions may relate to evolving deficits in cognitive function in individuals with Down syndrome, and to their language profile in particular

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Sensorimotor experience in virtual environments

    Get PDF
    The goal of rehabilitation is to reduce impairment and provide functional improvements resulting in quality participation in activities of life, Plasticity and motor learning principles provide inspiration for therapeutic interventions including movement repetition in a virtual reality environment, The objective of this research work was to investigate functional specific measurements (kinematic, behavioral) and neural correlates of motor experience of hand gesture activities in virtual environments stimulating sensory experience (VE) using a hand agent model. The fMRI compatible Virtual Environment Sign Language Instruction (VESLI) System was designed and developed to provide a number of rehabilitation and measurement features, to identify optimal learning conditions for individuals and to track changes in performance over time. Therapies and measurements incorporated into VESLI target and track specific impairments underlying dysfunction. The goal of improved measurement is to develop targeted interventions embedded in higher level tasks and to accurately track specific gains to understand the responses to treatment, and the impact the response may have upon higher level function such as participation in life. To further clarify the biological model of motor experiences and to understand the added value and role of virtual sensory stimulation and feedback which includes seeing one\u27s own hand movement, functional brain mapping was conducted with simultaneous kinematic analysis in healthy controls and in stroke subjects. It is believed that through the understanding of these neural activations, rehabilitation strategies advantaging the principles of plasticity and motor learning will become possible. The present research assessed successful practice conditions promoting gesture learning behavior in the individual. For the first time, functional imaging experiments mapped neural correlates of human interactions with complex virtual reality hands avatars moving synchronously with the subject\u27s own hands, Findings indicate that healthy control subjects learned intransitive gestures in virtual environments using the first and third person avatars, picture and text definitions, and while viewing visual feedback of their own hands, virtual hands avatars, and in the control condition, hidden hands. Moreover, exercise in a virtual environment with a first person avatar of hands recruited insular cortex activation over time, which might indicate that this activation has been associated with a sense of agency. Sensory augmentation in virtual environments modulated activations of important brain regions associated with action observation and action execution. Quality of the visual feedback was modulated and brain areas were identified where the amount of brain activation was positively or negatively correlated with the visual feedback, When subjects moved the right hand and saw unexpected response, the left virtual avatar hand moved, neural activation increased in the motor cortex ipsilateral to the moving hand This visual modulation might provide a helpful rehabilitation therapy for people with paralysis of the limb through visual augmentation of skills. A model was developed to study the effects of sensorimotor experience in virtual environments, and findings of the effect of sensorimotor experience in virtual environments upon brain activity and related behavioral measures. The research model represents a significant contribution to neuroscience research, and translational engineering practice, A model of neural activations correlated with kinematics and behavior can profoundly influence the delivery of rehabilitative services in the coming years by giving clinicians a framework for engaging patients in a sensorimotor environment that can optimally facilitate neural reorganization
    • …
    corecore