1,872 research outputs found

    Decentralized Observability with Limited Communication between Sensors

    Full text link
    In this paper, we study the problem of jointly retrieving the state of a dynamical system, as well as the state of the sensors deployed to estimate it. We assume that the sensors possess a simple computational unit that is capable of performing simple operations, such as retaining the current state and model of the system in its memory. We assume the system to be observable (given all the measurements of the sensors), and we ask whether each sub-collection of sensors can retrieve the state of the underlying physical system, as well as the state of the remaining sensors. To this end, we consider communication between neighboring sensors, whose adjacency is captured by a communication graph. We then propose a linear update strategy that encodes the sensor measurements as states in an augmented state space, with which we provide the solution to the problem of retrieving the system and sensor states. The present paper contains three main contributions. First, we provide necessary and sufficient conditions to ensure observability of the system and sensor states from any sensor. Second, we address the problem of adding communication between sensors when the necessary and sufficient conditions are not satisfied, and devise a strategy to this end. Third, we extend the former case to include different costs of communication between sensors. Finally, the concepts defined and the method proposed are used to assess the state of an example of approximate structural brain dynamics through linearized measurements.Comment: 15 pages, 5 figures, extended version of paper accepted at IEEE Conference on Decision and Control 201

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Blockchain-based secret key extraction for efficient and secure authentication in VANETs

    Get PDF
    Intelligent transportation systems are an emerging technology that facilitates real-time vehicle-to-everything communication. Hence, securing and authenticating data packets for intra- and inter-vehicle communication are fundamental security services in vehicular ad-hoc networks (VANETs). However, public-key cryptography (PKC) is commonly used in signature-based authentication, which consumes significant computation resources and communication bandwidth for signatures generation and verification, and key distribution. Therefore, physical layer-based secret key extraction has emerged as an effective candidate for key agreement, exploiting the randomness and reciprocity features of wireless channels. However, the imperfect channel reciprocity generates discrepancies in the extracted key, and existing reconciliation algorithms suffer from significant communication costs and security issues. In this paper, PKC-based authentication is used for initial legitimacy detection and exchanging authenticated probing packets. Accordingly, we propose a blockchain-based reconciliation technique that allows the trusted third party (TTP) to publish the correction sequence of the mismatched bits through a transaction using a smart contract. The smart contract functions enable the TTP to map the transaction address to vehicle-related information and allow vehicles to obtain the transaction contents securely. The obtained shared key is then used for symmetric key cryptography (SKC)-based authentication for subsequent transmissions, saving significant computation and communication costs. The correctness and security robustness of the scheme are proved using Burrows–Abadi–Needham (BAN)-logic and Automated Validation of Internet Security Protocols and Applications (AVISPA) simulator. We also discussed the scheme’s resistance to typical attacks. The scheme’s performance in terms of packet delay and loss ratio is evaluated using the network simulator (OMNeT++). Finally, the computation analysis shows that the scheme saves ~99% of the time required to verify 1000 messages compared to existing PKC-based schemes
    • …
    corecore