97 research outputs found

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    UAV Command and Control, Navigation and Surveillance: A Review of Potential 5G and Satellite Systems

    Full text link
    Drones, unmanned aerial vehicles (UAVs), or unmanned aerial systems (UAS) are expected to be an important component of 5G/beyond 5G (B5G) communications. This includes their use within cellular architectures (5G UAVs), in which they can facilitate both wireless broadcast and point-to-point transmissions, usually using small UAS (sUAS). Allowing UAS to operate within airspace along with commercial, cargo, and other piloted aircraft will likely require dedicated and protected aviation spectrum at least in the near term, while regulatory authorities adapt to their use. The command and control (C2), or control and non-payload communications (CNPC) link provides safety critical information for the control of the UAV both in terrestrial-based line of sight (LOS) conditions and in satellite communication links for so-called beyond LOS (BLOS) conditions. In this paper, we provide an overview of these CNPC links as they may be used in 5G and satellite systems by describing basic concepts and challenges. We review new entrant technologies that might be used for UAV C2 as well as for payload communication, such as millimeter wave (mmWave) systems, and also review navigation and surveillance challenges. A brief discussion of UAV-to-UAV communication and hardware issues are also provided.Comment: 10 pages, 5 figures, IEEE aerospace conferenc

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Quadcopter drone formation control via onboard visual perception

    Full text link
    Quadcopter drone formation control is an important capability for fields like area surveillance, search and rescue, agriculture, and reconnaissance. Of particular interest is formation control in environments where radio communications and/or GPS may be either denied or not sufficiently accurate for the desired application. To address this, we focus on vision as the sensing modality. We train an Hourglass Convolutional Neural Network (CNN) to discriminate between quadcopter pixels and non-quadcopter pixels in a live video feed and use it to guide a formation of quadcopters. The CNN outputs "heatmaps" - pixel-by-pixel likelihood estimates of the presence of a quadcopter. These heatmaps suffer from short-lived false detections. To mitigate these, we apply a version of the Siamese networks technique on consecutive frames for clutter mitigation and to promote temporal smoothness in the heatmaps. The heatmaps give an estimate of the range and bearing to the other quadcopter(s), which we use to calculate flight control commands and maintain the desired formation. We implement the algorithm on a single-board computer (ODROID XU4) with a standard webcam mounted to a quadcopter drone. Flight tests in a motion capture volume demonstrate successful formation control with two quadcopters in a leader-follower setup

    Survey on 5G Second Phase RAN Architectures and Functional Splits

    Get PDF
    The Radio Access Network (RAN) architecture evolves with different generations of mobile communication technologies and forms an indispensable component of the mobile network architecture. The main component of the RAN infrastructure is the base station, which includes a Radio Frequency unit and a baseband unit. The RAN is a collection of base stations connected to the core network to provide coverage through one or more radio access technologies. The advancement towards cloud native networks has led to centralizing the baseband processing of radio signals. There is a trade-off between the advantages of RAN centralization (energy efficiency, power cost reduction, and the cost of the fronthaul) and the complexity of carrying traffic between the data processing unit and distributed antennas. 5G networks hold high potential for adopting the centralized architecture to reduce maintenance costs while reducing deployment costs and improving resilience, reliability, and coordination. Incorporating the concept of virtualization and centralized RAN architecture enables to meet the overall requirements for both the customer and Mobile Network Operator. Functional splitting is one of the key enablers for 5G networks. It supports Centralized RAN, virtualized Radio Access Network, and the recent Open Radio Access Networks. This survey provides a comprehensive tutorial on the paradigms of the RAN architecture evolution, its key features, and implementation challenges. It provides a thorough review of the 3rd Generation Partnership Project functional splitting complemented by associated challenges and potential solutions. The survey also presents an overview of the fronthaul and its requirements and possible solutions for implementation, algorithms, and required tools whilst providing a vision of the evaluation beyond 5G second phase.info:eu-repo/semantics/submittedVersio

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Analysis and simulation of emergent architectures for internet of things

    Get PDF
    The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial.Postprint (published version
    • …
    corecore