22 research outputs found

    Braitenberg Vehicles as Developmental Neurosimulation

    Full text link
    The connection between brain and behavior is a longstanding issue in the areas of behavioral science, artificial intelligence, and neurobiology. Particularly in artificial intelligence research, behavior is generated by a black box approximating the brain. As is standard among models of artificial and biological neural networks, an analogue of the fully mature brain is presented as a blank slate. This model generates outputs and behaviors from a priori associations, yet this does not consider the realities of biological development and developmental learning. Our purpose is to model the development of an artificial organism that exhibits complex behaviors. We will introduce our approach, which is to use Braitenberg Vehicles (BVs) to model the development of an artificial nervous system. The resulting developmental BVs will generate behaviors that range from stimulus responses to group behavior that resembles collective motion. Next, we will situate this work in the domain of artificial brain networks. Then we will focus on broader themes such as embodied cognition, feedback, and emergence. Our perspective will then be exemplified by three software instantiations that demonstrate how a BV-genetic algorithm hybrid model, multisensory Hebbian learning model, and multi-agent approaches can be used to approach BV development. We introduce use cases such as optimized spatial cognition (vehicle-genetic algorithm hybrid model), hinges connecting behavioral and neural models (multisensory Hebbian learning model), and cumulative classification (multi-agent approaches). In conclusion, we will revisit concepts related to our approach and how they might guide future development.Comment: 32 pages, 8 figures, 2 table

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Computational Intelligence for Cooperative Swarm Control

    Full text link
    Over the last few decades, swarm intelligence (SI) has shown significant benefits in many practical applications. Real-world applications of swarm intelligence include disaster response and wildlife conservation. Swarm robots can collaborate to search for survivors, locate victims, and assess damage in hazardous environments during an earthquake or natural disaster. They can coordinate their movements and share data in real-time to increase their efficiency and effectiveness while guiding the survivors. In addition to tracking animal movements and behaviour, robots can guide animals to or away from specific areas. Sheep herding is a significant source of income in Australia that could be significantly enhanced if the human shepherd could be supported by single or multiple robots. Although the shepherding framework has become a popular SI mechanism, where a leading agent (sheepdog) controls a swarm of agents (sheep) to complete a task, controlling a swarm of agents is still not a trivial task, especially in the presence of some practical constraints. For example, most of the existing shepherding literature assumes that each swarm member has an unlimited sensing range to recognise all other members’ locations. However, this is not practical for physical systems. In addition, current approaches do not consider shepherding as a distributed system where an agent, namely a central unit, may observe the environment and commu- nicate with the shepherd to guide the swarm. However, this brings another hurdle when noisy communication channels between the central unit and the shepherd af- fect the success of the mission. Also, the literature lacks shepherding models that can cope with dynamic communication systems. Therefore, this thesis aims to design a multi-agent learning system for effective shepherding control systems in a partially observable environment under communication constraints. To achieve this goal, the thesis first introduces a new methodology to guide agents whose sensing range is limited. In this thesis, the sheep are modelled as an induced network to represent the sheep’s sensing range and propose a geometric method for finding a shepherd-impacted subset of sheep. The proposed swarm optimal herding point uses a particle swarm optimiser and a clustering mechanism to find the sheepdog’s near-optimal herding location while considering flock cohesion. Then, an improved version of the algorithm (named swarm optimal modified centroid push) is proposed to estimate the sheepdog’s intermediate waypoints to the herding point considering the sheep cohesion. The approaches outperform existing shepherding methods in reducing task time and increasing the success rate for herding. Next, to improve shepherding in noisy communication channels, this thesis pro- poses a collaborative learning-based method to enhance communication between the central unit and the herding agent. The proposed independent pre-training collab- orative learning technique decreases the transmission mean square error by half in 10% of the training time compared to existing approaches. The algorithm is then ex- tended so that the sheepdog can read the modulated herding points from the central unit. The results demonstrate the efficiency of the new technique in time-varying noisy channels. Finally, the central unit is modelled as a mobile agent to lower the time-varying noise caused by the sheepdog’s motion during the task. So, I propose a Q-learning- based incremental search to increase transmission success between the shepherd and the central unit. In addition, two unique reward functions are presented to ensure swarm guidance success with minimal energy consumption. The results demonstrate an increase in the success rate for shepherding

    Foundations of Trusted Autonomy

    Get PDF
    Trusted Autonomy; Automation Technology; Autonomous Systems; Self-Governance; Trusted Autonomous Systems; Design of Algorithms and Methodologie

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis
    corecore