127,042 research outputs found

    Networking Support For Mobile Computing

    Get PDF
    With increasing use of small portable computers, wireless networks and satellites, a trend to support computing on the move has emerged. This trend is known as mobile computing or anytime and anywhere computing. Some people refer it as Nomadic computing. No matter which name is applied, all these terms really imply that a user may not maintain a fixed position in the network. The user is free to roam from one place to another. However the mobile user still expects uninterrupted network access and the ability to run some networked applications. To support such mobility, the user is typically provided a wireless interface to communicate with other fixed and mobile users. The mobile computing environment can be described by the following attributes (a) mobile users, (b) mobile support stations or base stations serving an area, (c) wireless interface, (d) wireless medium with varying channel characteristics (due to fading, noise, interference, etc.) and (e) various applications requiring specific support. A mobile computing environment raises such issues as how to route packets as the mobile user (hosts) moves from one place to the other and how to overcome limitations including limited bandwidth and storage. This tutorial presents an introduction to mobile computing, to the challenges introduced, and to emerging networking infrastructures for mobile computing

    Binary Task Offloading Model For Mobile Edge Computing using NDN Architecture

    Get PDF
    Driven by the advantages of Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) in nextgeneration networks we propose an architecture for MEC using Named Data Networking (NDN). NDN is one of the prominent architectures of ICN having features like unique-naming, in-network caching, inherit support for multicasting, and support for mobility. Placing MEC in NDN provides the additional facilities of edge computing like pushing of resource-hungry and time-critical applications of the mobile devices to the edge-computing server. Therefore, one of the research challenges is the decision regarding the task offloading process by the end-users to the edge-computing server. We propose a mathematical model that enables the end-user to take decisions in Yes/No regarding the binary task offloading process

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    Infrastructure for Distributed Applications in Ad Hoc Networks of Small Mobile Wireless Devices

    Get PDF
    Mobile wireless computing devices such as cellphones, pagers, personal digital assistants, pocket PCs, and tablet computers are all potential platforms for participating in small group, wireless, many-to-many distributed applications. The networking technology needed to support such applications is readily available. However, almost all existing middleware infrastructure for distributed applications was designed for central servers and wired connections. The Anhinga Infrastructure described here runs entirely on the wireless mobile devices and so does not require any central server support. The Anhinga Infrastructure provides a message broadcast ad hoc networking protocol and a distributed computing platform based on lightweight versions of Java, Jini Network Technology, and tuple spaces

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Gathering experience in trust-based interactions

    Get PDF
    As advances in mobile and embedded technologies coupled with progress in adhoc networking fuel the shift towards ubiquitous computing systems it is becoming increasingly clear that security is a major concern. While this is true of all computing paradigms, the characteristics of ubiquitous systems amplify this concern by promoting spontaneous interaction between diverse heterogeneous entities across administrative boundaries [5]. Entities cannot therefore rely on a specific control authority and will have no global view of the state of the system. To facilitate collaboration with unfamiliar counterparts therefore requires that an entity takes a proactive approach to self-protection. We conjecture that trust management is the best way to provide support for such self-protection measures

    Mobile Online Gaming via Resource Sharing

    Full text link
    Mobile gaming presents a number of main issues which remain open. These are concerned mainly with connectivity, computational capacities, memory and battery constraints. In this paper, we discuss the design of a fully distributed approach for the support of mobile Multiplayer Online Games (MOGs). In mobile environments, several features might be exploited to enable resource sharing among multiple devices / game consoles owned by different mobile users. We show the advantages of trading computing / networking facilities among mobile players. This operation mode opens a wide number of interesting sharing scenarios, thus promoting the deployment of novel mobile online games. In particular, once mobile nodes make their resource available for the community, it becomes possible to distribute the software modules that compose the game engine. This allows to distribute the workload for the game advancement management. We claim that resource sharing is in unison with the idea of ludic activity that is behind MOGs. Hence, such schemes can be profitably employed in these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012. Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-
    • …
    corecore