49 research outputs found

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    How the architecture of the CityCar enhances personal mobility and supporting industries

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 121-124).Growing populations, increasing middle-class, and rapid urbanization - for today's urban dweller, all of these escalating factors continue to contribute to problems of excessive energy use, road congestion, pollution due to carbon emissions, and inefficient personal transit. Considering that the average vehicle in a city weighs thousands of pounds, usually caries only one person per trip, and expends significant proportions of its gasoline simply searching for resources such as parking, new efficient and intelligent modes of transportation are in need of exploration. This dissertation presents the design and development of an electric vehicle called the "CityCar" that confronts the aforementioned problems of urban mobility with a novel vehicle architecture. The assembly of the CityCar derives from a subset of "urban modular electric vehicle" (uMEV) components in which five core units are combined to create a variety of solutions for urban personal mobility. Drastically decreasing the granularity of the vehicle's subcomponents into larger interchangeable modules, the uMEV platform expands options for fleet customization while simultaneously addressing the complex rapport between automotive manufacturers and their suppliers through a responsibility shift among their respective subcomponents. Transforming its anatomy from complex mechanically-dominant entities to electrically-dominant modular components enables unique design features within the uMEV fleet. The CityCar for example exploits technologies such as a folding chassis to reduce its footprint by 40% and Robot Wheels that each are allotted between 72 to 120-degrees of rotation to together enable a seven-foot turning circle. Just over 1,000 pounds, its lightweight zero-emitting electric platform, comprised of significantly fewer parts, curbs negative externalities that today's automobiles create in city environments. Additionally, the vehicle platform developed from the assembly of several core units empowers a consortium of suppliers to self-coordinate through a unique modular business model. Lastly, the CityCar specific uMEV confronts problems within urban transit by providing a nimble folding mobility solution tailored specifically to crowded cities. Benefits, such as a 5:1 parking density and its reduced maintenance demands, are especially reinforced in the context of shared personal transportation services like Mobility-on-Demand.by William Lark, Jr.Ph.D

    Energy management and control strategies for the use of supercapacitors storage technologies in urban railway traction systems

    Get PDF
    In recent years the need to reduce global energy consumption and CO2 emissions in the environment, has been involved even in the railways sector, aimed at the highly competitive concept of new vehicles/transportation systems. The requirements hoped by the operating companies, particularly as concerns tramway and metro-train systems, are increasingly focused on products with so far advanced features in terms of energy and environmental impact. In order to accomplish this possible scenario, this could be put into effects in technological subsystems and critical components, which are able to fulfill not only functional and performance requirements, but also regarding the new canons of energy saving. On the other hand, the regional and national energetic political strategies impose a continuous effort in the eco-sustainability and energy saving direction both for the vehicles and for the infrastructure management. In this scenario, the thesis aims to fill the gap in the technical literature and deals with improving the energy efficiency of urban rail transport systems by proposing both design methodologies and effective control strategies for supercapacitor-based energy storage systems, to be installed on-board urban rail vehicles or along the rail track. Firstly, a deep, rigorous and comprehensive study on the factors which affect energy issues in a DC-electrified urban transit railway system is carried out. Then a widespread overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail is presented, also by providing an assessment of their main advantages and disadvantages alongside a list of the most relevant scientific studies and well established commercial solutions. Afterwards, some effective control strategies for the optimal energy management of the supercapacitor-based energy storage system have been studied. Extensive simulations have been performed with the aim of validating the proposed techniques by employing a methodology which is based on tests carried out by means of scale models of the real systems. A wide range of experimental tests has been developed and carried out on a laboratory-scale simulator for a typical urban service railway vehicle, in order to fully confirm the theoretical performances, validity, and feasibility of the studied controls, and quantify the technical and economic advantages obtained in terms of global energy saving, voltage regulation, power compensation and infrastructure power loss reduction. The overall goal of this study is to gain an understanding of the methods and approaches for assessing the use of supercapacitor storage systems in urban rail transit oriented to the optimization of the energy saving and the reduction of the vehicle energy consumption, for whatever technological solutions are adopted

    Stability Control of Electric Vehicles with In-wheel Motors

    Get PDF
    Recently, mostly due to global warming concerns and high oil prices, electric vehicles have attracted a great deal of interest as an elegant solution to environmental and energy problems. In addition to the fact that electric vehicles have no tailpipe emissions and are more efficient than internal combustion engine vehicles, they represent more versatile platforms on which to apply advanced motion control techniques, since motor torque and speed can be generated and controlled quickly and precisely. The chassis control systems developed today are distinguished by the way the individual subsystems work in order to provide vehicle stability and control. However, the optimum driving dynamics can only be achieved when the tire forces on all wheels and in all three directions can be influenced and controlled precisely. This level of control requires that the vehicle is equipped with various chassis control systems that are integrated and networked together. Drive-by-wire electric vehicles with in-wheel motors provide the ideal platform for developing the required control system in such a situation. The focus of this thesis is to develop effective control strategies to improve driving dynamics and safety based on the philosophy of individually monitoring and controlling the tire forces on each wheel. A two-passenger electric all-wheel-drive urban vehicle (AUTO21EV) with four direct-drive in-wheel motors and an active steering system is designed and developed in this work. Based on this platform, an advanced fuzzy slip control system, a genetic fuzzy yaw moment controller, an advanced torque vectoring controller, and a genetic fuzzy active steering controller are developed, and the performance and effectiveness of each is evaluated using some standard test maneuvers. Finally, these control systems are integrated with each other by taking advantage of the strengths of each chassis control system and by distributing the required control effort between the in-wheel motors and the active steering system. The performance and effectiveness of the integrated control approach is evaluated and compared to the individual stability control systems, again based on some predefined standard test maneuvers

    NASA Tech Briefs, August 2002

    Get PDF
    Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    NASA Tech Briefs, October 1992

    Get PDF
    Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    NASA Tech Briefs, February 2001

    Get PDF
    The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazin
    corecore