3,543 research outputs found

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    Smart grids as distributed learning control

    Get PDF
    The topic of smart grids has received a lot of attention but from a scientific point of view it is a highly imprecise concept. This paper attempts to describe what could ultimately work as a control process to fulfill the aims usually stated for such grids without throwing away some important principles established by the pioneers in power system control. In modern terms, we need distributed (or multi-agent) learning control which is suggested to work with a certain consensus mechanism which appears to leave room for achieving cyber-physical security, robustness and performance goals. © 2012 IEEE.published_or_final_versio
    • …
    corecore