1,420 research outputs found

    An Optimal Transmission Strategy for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgements

    Get PDF
    This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the state using a local Kalman filter. The sensor transmits quantized information over a packet dropping link to the remote receiver. The receiver sends packet receipt acknowledgments back to the sensor via an erroneous feedback communication channel which is itself packet dropping. The key novelty of this formulation is that the smart sensor decides, at each discrete time instant, whether to transmit a quantized version of either its local state estimate or its local innovation. The objective is to design optimal transmission policies in order to minimize a long term average cost function as a convex combination of the receiver's expected estimation error covariance and the energy needed to transmit the packets. The optimal transmission policy is obtained by the use of dynamic programming techniques. Using the concept of submodularity, the optimality of a threshold policy in the case of scalar systems with perfect packet receipt acknowledgments is proved. Suboptimal solutions and their structural results are also discussed. Numerical results are presented illustrating the performance of the optimal and suboptimal transmission policies.Comment: Conditionally accepted in IEEE Transactions on Control of Network System

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Interplay Between Transmission Delay, Average Data Rate, and Performance in Output Feedback Control over Digital Communication Channels

    Full text link
    The performance of a noisy linear time-invariant (LTI) plant, controlled over a noiseless digital channel with transmission delay, is investigated in this paper. The rate-limited channel connects the single measurement output of the plant to its single control input through a causal, but otherwise arbitrary, coder-controller pair. An infomation-theoretic approach is utilized to analyze the minimal average data rate required to attain the quadratic performance when the channel imposes a known constant delay on the transmitted data. This infimum average data rate is shown to be lower bounded by minimizing the directed information rate across a set of LTI filters and an additive white Gaussian noise (AWGN) channel. It is demonstrated that the presence of time delay in the channel increases the data rate needed to achieve a certain level of performance. The applicability of the results is verified through a numerical example. In particular, we show by simulations that when the optimal filters are used but the AWGN channel (used in the lower bound) is replaced by a simple scalar uniform quantizer, the resulting operational data rates are at most around 0.3 bits above the lower bounds.Comment: A less-detailed version of this paper has been accepted for publication in the proceedings of ACC 201

    Kalman Filtering Over a Packet-Dropping Network: A Probabilistic Perspective

    Get PDF
    We consider the problem of state estimation of a discrete time process over a packet-dropping network. Previous work on Kalman filtering with intermittent observations is concerned with the asymptotic behavior of E[P_k], i.e., the expected value of the error covariance, for a given packet arrival rate. We consider a different performance metric, Pr[P_k ≤ M], i.e., the probability that P_k is bounded by a given M. We consider two scenarios in the paper. In the first scenario, when the sensor sends its measurement data to the remote estimator via a packet-dropping network, we derive lower and upper bounds on Pr[P_k ≤ M]. In the second scenario, when the sensor preprocesses the measurement data and sends its local state estimate to the estimator, we show that the previously derived lower and upper bounds are equal to each other, hence we are able to provide a closed form expression for Pr[P_k ≤ M]. We also recover the results in the literature when using Pr[P_k ≤ M] as a metric for scalar systems. Examples are provided to illustrate the theory developed in the paper
    corecore