460 research outputs found

    Spatiotemporal Splitting of Distribution Networks into Self-Healing Resilient Microgrids using an Adjustable Interval Optimization

    Get PDF
    The distribution networks can convincingly break down into small-scale self-controllable areas, namely microgrids to substitute microgrids arrangements for effectively coping with any perturbations. To achieve these targets, this paper examines a novel spatiotemporal algorithm to split the existing network into a set of self-healing microgrids. The main intention in the grid-tied state is to maximize the microgrids profit while equilibrating load and generation at the islanded state by sectionalizing on-fault area, executing resources rescheduling, network reconfiguration and load shedding when the main grid is interrupted. The proposed problem is formulated as an exact computationally efficient mixed integer linear programming problem relying on the column & constraint generation framework and an adjustable interval optimization is envisaged to make the microgrids less susceptible against renewables variability. Finally, the effectiveness of the proposed model is adequately assured by performing a realistic case study.© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A New Efficient Stochastic Energy Management Technique for Interconnected AC Microgrids

    Full text link
    Cooperating interconnected microgrids with the Distribution System Operation (DSO) can lead to an improvement in terms of operation and reliability. This paper investigates the optimal operation and scheduling of interconnected microgrids highly penetrated by renewable energy resources (DERs). Moreover, an efficient stochastic framework based on the Unscented Transform (UT) method is proposed to model uncertainties associated with the hourly market price, hourly load demand and DERs output power. Prior to the energy management, a newly developed linearization technique is employed to linearize nodal equations extracted from the AC power flow. The proposed stochastic problem is formulated as a single-objective optimization problem minimizing the interconnected AC MGs cost function. In order to validate the proposed technique, a modified IEEE 69 bus network is studied as the test case

    Quasi-SoC Balancing Control for Networked Ad-hoc Microgrids Against Natural Disasters

    Get PDF
    After natural disasters, mobile containerized renewable energy-based Ad-hoc microgrids could be an emergency solution to maintain power supply to critical loads. In this paper, a novel two-layer coordinated control for individual and networked Ad-hoc microgrids is proposed. The first layer deals with the internal coordination between RE and ESS to maintain a stable operation within an Ad-hoc microgrid by using bus frequency, thereby without communication links to reduce power consumption. When forming the networked Ad-hoc microgrids to a critical load with higher load demand, the regulations on the bus frequency from each Ad-hoc microgrid will result in instability. Therefore, a quasi-SoC balancing control strategy for the networked Ad-hoc microgrids is further proposed with only binary information exchanges to mitigate the interactions caused by the internal coordination control among the Ad-hoc microgrids. To verify the effectiveness of the proposed control approach, simulation results with Matlab/Simulink are presented.</p

    Optimal resilient allocation of mobile energy storages considering coordinated microgrids biddings

    Get PDF
    This paper presents an algorithm for optimal resilient allocation of Mobile Energy Storage Systems (MESSs) for an active distribution system considering the microgrids coordinated bidding process. The main contribution of this paper is that the impacts of coordinated biddings of microgrids on the allocation of MESSs in the day-ahead and real-time markets are investigated. The proposed optimization framework is another contribution of this paper that decomposes the optimization process into multiple procedures for the day-ahead and real-time optimization horizons. The active distribution system can transact active power, reactive power, spinning reserve, and regulating reserve with the microgrids in the day-ahead horizon. Further, the distribution system can transact active power, reactive power, and ramp services with microgrids on the real-time horizon. The self-healing index and coordinated gain index are introduced to assess the resiliency level and coordination gain of microgrids, respectively. The proposed algorithm was simulated for the 123-bus test system. The method reduced the average value of aggregated operating and interruption costs of the system by about 60.16% considering the coordinated bidding of microgrids for the worst-case external shock. The proposed algorithm successfully increased the self-healing index by about 49.88% for the test system.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation
    corecore