2,245 research outputs found

    eHealth and the Internet of Things

    Get PDF
    To respond to an ageing population, eHealth strategies offer significant opportunities in achieving a balanced and sustainable healthcare infrastructure. Advances in technology both at the sensor and device levels and in respect of information technology have opened up other possibilities and options. Of significance among these is what is increasingly referred to as the Internet of Things, the interconnection of physical devices to an information infrastructure. The paper therefore sets out to position the Internet of Things at the core of future developments in eHealt

    Services and Policies for Care at Home

    Get PDF
    It is argued that various factors including the increasingly ageing population will require more care services to be delivered to users in their own homes. Desirable characteristics of such services are outlined. The Open Services Gateway initiative has been adopted as a widely accepted framework that is particularly suitable for developing home care services. Service discovery in this context is enhanced through ontologies that achieve greater flexibility and precision in service description. A service ontology stack allows common concepts to be extended for new services. The architecture of a policy system for home care is explained. This is used for flexible creation and control of new services. The core policy language and its extension for home care are introduced, and illustrated through typical examples. Future extensions of the approach are discussed

    Circular Economy Snapshot: Philips Light as a Service

    Get PDF
    Philips, the Dutch lighting, healthcare and consumer lifestyle company and the world's largest lighting supplier, began its sustainability journey in the early 1990s when it set its first sustainability standards. It began by focusing on technology innovations to reduce packaging and increase energy efficiency of its products. This focus shifted over time to consider end-to-end solutions and how the company could influence consumer choices and behaviour. This resulted in a growing portfolio of green product innovations.By the 2000s the company began setting goals to grow its green product portfolio. In 2007 it set a target that 30% of its turnover would be from green product revenues by 2012. In 2012 it set a new goal of 55% of total sales to be 'green' (as of 2013 the proportion stood at 51%), and embedded the target in the corporate scorecard. About one third of its over $2B annual R&D budget is now directed towards green innovation.Today the company's mission is to make the world healthier and more sustainable through innovation and its goal is to improve the lives of 3 billion people a year by 2025. It committed to this mission in 2012 both as a competitive necessity and with the conviction that companies solving the problem of resource constraints will have an advantage. It believes that customers will increasingly consider natural resources in their buying decisions and will give preference to companies that show responsible behavior

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The Internet of Things Will Thrive by 2025

    Get PDF
    This report is the latest research report in a sustained effort throughout 2014 by the Pew Research Center Internet Project to mark the 25th anniversary of the creation of the World Wide Web by Sir Tim Berners-LeeThis current report is an analysis of opinions about the likely expansion of the Internet of Things (sometimes called the Cloud of Things), a catchall phrase for the array of devices, appliances, vehicles, wearable material, and sensor-laden parts of the environment that connect to each other and feed data back and forth. It covers the over 1,600 responses that were offered specifically about our question about where the Internet of Things would stand by the year 2025. The report is the next in a series of eight Pew Research and Elon University analyses to be issued this year in which experts will share their expectations about the future of such things as privacy, cybersecurity, and net neutrality. It includes some of the best and most provocative of the predictions survey respondents made when specifically asked to share their views about the evolution of embedded and wearable computing and the Internet of Things

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Healthcare in the Smart Home: A Study of Past, Present and Future

    Get PDF
    Open Access journalUbiquitous or Pervasive Computing is an increasingly used term throughout the technology industry and is beginning to enter the consumer electronics space in its most recent form under the umbrella term: “Internet of Things”. One area of focus is in augmenting the home with intelligent, networked sensors and computers to create a Smart Home which opens a host of possibilities for the role of tomorrow’s dwelling. As the world’s population continues to live longer and consequently experience more medical-related ailments, at the same time institutional healthcare is struggling to cope, the role of the Smart Home becomes paramount to monitoring a dweller’s health and providing any necessary intervention. This study looks at the history of Smart Home Healthcare, current research areas, and potential areas of future investigation. Unique categorisations are presented in Activities of Daily Living (ADL) and Personal Sensors, and a thorough look at the application of Smart Home Healthcare is presented. Technology can augment traditional methods of healthcare delivery and in some cases completely replace it. Costs can be reduced and medical adherence can be increased, all of which contribute to a more sustainable and effective model of care

    Connectivity for Healthcare and Well-Being Management: Examples from Six European Projects

    Get PDF
    Technological advances and societal changes in recent years have contributed to a shift in traditional care models and in the relationship between patients and their doctors/carers, with (in general) an increase in the patient-carer physical distance and corresponding changes in the modes of access to relevant care information by all groups. The objective of this paper is to showcase the research efforts of six projects (that the authors are currently, or have recently been, involved in), CAALYX, eCAALYX, COGKNOW, EasyLine+, I2HOME, and SHARE-it, all funded by the European Commission towards a future where citizens can take an active role into managing their own healthcare. Most importantly, sensitive groups of citizens, such as the elderly, chronically ill and those suffering from various physical and cognitive disabilities, will be able to maintain vital and feature-rich connections with their families, friends and healthcare providers, who can then respond to, and prevent, the development of adverse health conditions in those they care for in a timely manner, wherever the carers and the people cared for happen to be
    • 

    corecore