12,750 research outputs found

    Network-based support vector machine for classification of microarray samples

    Get PDF
    Background: The importance of network-based approach to identifying biological markers for diagnostic classification and prognostic assessment in the context of microarray data has been increasingly recognized. To our knowledge, there have been few, if any, statistical tools that explicitly incorporate the prior information of gene networks into classifier building. The main idea of this paper is to take full advantage of the biological observation that neighboring genes in a network tend to function together in biological processes and to embed this information into a formal statistical framework. Results: We propose a network-based support vecto

    Mapping microarray gene expression data into dissimilarity spaces for tumor classification

    Get PDF
    Microarray gene expression data sets usually contain a large number of genes, but a small number of samples. In this article, we present a two-stage classification model by combining feature selection with the dissimilarity-based representation paradigm. In the preprocessing stage, the ReliefF algorithm is used to generate a subset with a number of topranked genes; in the learning/classification stage, the samples represented by the previously selected genes are mapped into a dissimilarity space, which is then used to construct a classifier capable of separating the classes more easily than a feature-based model. The ultimate aim of this paper is not to find the best subset of genes, but to analyze the performance of the dissimilarity-based models by means of a comprehensive collection of experiments for the classification of microarray gene expression data. To this end, we compare the classification results of an artificial neural network, a support vector machine and the Fisher’s linear discriminant classifier built on the feature (gene) space with those on the dissimilarity space when varying the number of genes selected by ReliefF, using eight different microarray databases. The results show that the dissimilarity-based classifiers systematically outperform the feature-based models. In addition, classification through the proposed representation appears to be more robust (i.e. less sensitive to the number of genes) than that with the conventional feature-based representation

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Innovative Hybridisation of Genetic Algorithms and Neural Networks in Detecting Marker Genes for Leukaemia Cancer

    Get PDF
    Methods for extracting marker genes that trigger the growth of cancerous cells from a high level of complexity microarrays are of much interest from the computing community. Through the identified genes, the pathology of cancerous cells can be revealed and early precaution can be taken to prevent further proliferation of cancerous cells. In this paper, we propose an innovative hybridised gene identification framework based on genetic algorithms and neural networks to identify marker genes for leukaemia disease. Our approach confirms that high classification accuracy does not ensure the optimal set of genes have been identified and our model delivers a more promising set of genes even with a lower classification accurac

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Algorithms Implemented for Cancer Gene Searching and Classifications

    Get PDF
    Understanding the gene expression is an important factor to cancer diagnosis. One target of this understanding is implementing cancer gene search and classification methods. However, cancer gene search and classification is a challenge in that there is no an obvious exact algorithm that can be implemented individually for various cancer cells. In this paper a research is con-ducted through the most common top ranked algorithms implemented for cancer gene search and classification, and how they are implemented to reach a better performance. The paper will distinguish algorithms implemented for Bio image analysis for cancer cells and algorithms implemented based on DNA array data. The main purpose of this paper is to explore a road map towards presenting the most current algorithms implemented for cancer gene search and classification

    A cDNA Microarray Gene Expression Data Classifier for Clinical Diagnostics Based on Graph Theory

    Get PDF
    Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithm
    corecore