761 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Recalibrating machine learning for social biases: demonstrating a new methodology through a case study classifying gender biases in archival documentation

    Get PDF
    This thesis proposes a recalibration of Machine Learning for social biases to minimize harms from existing approaches and practices in the field. Prioritizing quality over quantity, accuracy over efficiency, representativeness over convenience, and situated thinking over universal thinking, the thesis demonstrates an alternative approach to creating Machine Learning models. Drawing on GLAM, the Humanities, the Social Sciences, and Design, the thesis focuses on understanding and communicating biases in a specific use case. 11,888 metadata descriptions from the University of Edinburgh Heritage Collections' Archives catalog were manually annotated for gender biases and text classification models were then trained on the resulting dataset of 55,260 annotations. Evaluations of the models' performance demonstrates that annotating gender biases can be automated; however, the subjectivity of bias as a concept complicates the generalizability of any one approach. The contributions are: (1) an interdisciplinary and participatory Bias-Aware Methodology, (2) a Taxonomy of Gendered and Gender Biased Language, (3) data annotated for gender biased language, (4) gender biased text classification models, and (5) a human-centered approach to model evaluation. The contributions have implications for Machine Learning, demonstrating how bias is inherent to all data and models; more specifically for Natural Language Processing, providing an annotation taxonomy, annotated datasets and classification models for analyzing gender biased language at scale; for the Gallery, Library, Archives, and Museum sector, offering guidance to institutions seeking to reconcile with histories of marginalizing communities through their documentation practices; and for historians, who utilize cultural heritage documentation to study and interpret the past. Through a real-world application of the Bias-Aware Methodology in a case study, the thesis illustrates the need to shift away from removing social biases and towards acknowledging them, creating data and models that surface the uncertainty and multiplicity characteristic of human societies

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Predicting Paid Certification in Massive Open Online Courses

    Get PDF
    Massive open online courses (MOOCs) have been proliferating because of the free or low-cost offering of content for learners, attracting the attention of many stakeholders across the entire educational landscape. Since 2012, coined as “the Year of the MOOCs”, several platforms have gathered millions of learners in just a decade. Nevertheless, the certification rate of both free and paid courses has been low, and only about 4.5–13% and 1–3%, respectively, of the total number of enrolled learners obtain a certificate at the end of their courses. Still, most research concentrates on completion, ignoring the certification problem, and especially its financial aspects. Thus, the research described in the present thesis aimed to investigate paid certification in MOOCs, for the first time, in a comprehensive way, and as early as the first week of the course, by exploring its various levels. First, the latent correlation between learner activities and their paid certification decisions was examined by (1) statistically comparing the activities of non-paying learners with course purchasers and (2) predicting paid certification using different machine learning (ML) techniques. Our temporal (weekly) analysis showed statistical significance at various levels when comparing the activities of non-paying learners with those of the certificate purchasers across the five courses analysed. Furthermore, we used the learner’s activities (number of step accesses, attempts, correct and wrong answers, and time spent on learning steps) to build our paid certification predictor, which achieved promising balanced accuracies (BAs), ranging from 0.77 to 0.95. Having employed simple predictions based on a few clickstream variables, we then analysed more in-depth what other information can be extracted from MOOC interaction (namely discussion forums) for paid certification prediction. However, to better explore the learners’ discussion forums, we built, as an original contribution, MOOCSent, a cross- platform review-based sentiment classifier, using over 1.2 million MOOC sentiment-labelled reviews. MOOCSent addresses various limitations of the current sentiment classifiers including (1) using one single source of data (previous literature on sentiment classification in MOOCs was based on single platforms only, and hence less generalisable, with relatively low number of instances compared to our obtained dataset;) (2) lower model outputs, where most of the current models are based on 2-polar iii iv classifier (positive or negative only); (3) disregarding important sentiment indicators, such as emojis and emoticons, during text embedding; and (4) reporting average performance metrics only, preventing the evaluation of model performance at the level of class (sentiment). Finally, and with the help of MOOCSent, we used the learners’ discussion forums to predict paid certification after annotating learners’ comments and replies with the sentiment using MOOCSent. This multi-input model contains raw data (learner textual inputs), sentiment classification generated by MOOCSent, computed features (number of likes received for each textual input), and several features extracted from the texts (character counts, word counts, and part of speech (POS) tags for each textual instance). This experiment adopted various deep predictive approaches – specifically that allow multi-input architecture - to early (i.e., weekly) investigate if data obtained from MOOC learners’ interaction in discussion forums can predict learners’ purchase decisions (certification). Considering the staggeringly low rate of paid certification in MOOCs, this present thesis contributes to the knowledge and field of MOOC learner analytics with predicting paid certification, for the first time, at such a comprehensive (with data from over 200 thousand learners from 5 different discipline courses), actionable (analysing learners decision from the first week of the course) and longitudinal (with 23 runs from 2013 to 2017) scale. The present thesis contributes with (1) investigating various conventional and deep ML approaches for predicting paid certification in MOOCs using learner clickstreams (Chapter 5) and course discussion forums (Chapter 7), (2) building the largest MOOC sentiment classifier (MOOCSent) based on learners’ reviews of the courses from the leading MOOC platforms, namely Coursera, FutureLearn and Udemy, and handles emojis and emoticons using dedicated lexicons that contain over three thousand corresponding explanatory words/phrases, (3) proposing and developing, for the first time, multi-input model for predicting certification based on the data from discussion forums which synchronously processes the textual (comments and replies) and numerical (number of likes posted and received, sentiments) data from the forums, adapting the suitable classifier for each type of data as explained in detail in Chapter 7

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Broadening the Horizon of Adversarial Attacks in Deep Learning

    Get PDF
    152 p.Los modelos de Aprendizaje Automático como las Redes Neuronales Profundas son actualmente el núcleo de una amplia gama de tecnologías aplicadas en tareas críticas, como el reconocimiento facial o la conducción autónoma, en las que tanto la capacidad predictiva como la fiabilidad son requisitos fundamentales. Sin embargo, estos modelos pueden ser fácilmente engañados por inputs manipulados deforma imperceptible para el ser humano, denominados ejemplos adversos (adversarial examples), lo que implica una brecha de seguridad que puede ser explotada por un atacante con fines ilícitos. Dado que estas vulnerabilidades afectan directamente a la integridad y fiabilidad de múltiples sistemas que,progresivamente, están siendo desplegados en aplicaciones del mundo real, es crucial determinar el alcance de dichas vulnerabilidades para poder garantizar así un uso más responsable, informado y seguro de esos sistemas. Por estos motivos, esta tesis doctoral tiene como objetivo principal investigar nuevas nociones de ataques adversos y vulnerabilidades en las Redes Neuronales Profundas. Como resultado de esta investigación, a lo largo de esta tesis se exponen nuevos paradigmas de ataque que exceden o amplían las capacidades de los métodos actualmente disponibles en la literatura, ya que son capaces de alcanzar objetivos más generales, complejos o ambiciosos. Al mismo tiempo, se exponen nuevas brechas de seguridad en casos de uso y escenarios en los que las consecuencias de los ataques adversos no habían sido investigadas con anterioridad. Nuestro trabajo también arroja luz sobre diferentes propiedades de estos modelos que los hacen más vulnerables a los ataques adversos, contribuyendo a una mejor comprensión de estos fenómenos
    corecore