11,332 research outputs found

    On Reverse Engineering in the Cognitive and Brain Sciences

    Get PDF
    Various research initiatives try to utilize the operational principles of organisms and brains to develop alternative, biologically inspired computing paradigms and artificial cognitive systems. This paper reviews key features of the standard method applied to complexity in the cognitive and brain sciences, i.e. decompositional analysis or reverse engineering. The indisputable complexity of brain and mind raise the issue of whether they can be understood by applying the standard method. Actually, recent findings in the experimental and theoretical fields, question central assumptions and hypotheses made for reverse engineering. Using the modeling relation as analyzed by Robert Rosen, the scientific analysis method itself is made a subject of discussion. It is concluded that the fundamental assumption of cognitive science, i.e. complex cognitive systems can be analyzed, understood and duplicated by reverse engineering, must be abandoned. Implications for investigations of organisms and behavior as well as for engineering artificial cognitive systems are discussed.Comment: 19 pages, 5 figure

    Synchronization of Nonlinear Circuits in Dynamic Electrical Networks with General Topologies

    Full text link
    Sufficient conditions are derived for global asymptotic synchronization in a system of identical nonlinear electrical circuits coupled through linear time-invariant (LTI) electrical networks. In particular, the conditions we derive apply to settings where: i) the nonlinear circuits are composed of a parallel combination of passive LTI circuit elements and a nonlinear voltage-dependent current source with finite gain; and ii) a collection of these circuits are coupled through either uniform or homogeneous LTI electrical networks. Uniform electrical networks have identical per-unit-length impedances. Homogeneous electrical networks are characterized by having the same effective impedance between any two terminals with the others open circuited. Synchronization in these networks is guaranteed by ensuring the stability of an equivalent coordinate-transformed differential system that emphasizes signal differences. The applicability of the synchronization conditions to this broad class of networks follows from leveraging recent results on structural and spectral properties of Kron reduction---a model-reduction procedure that isolates the interactions of the nonlinear circuits in the network. The validity of the analytical results is demonstrated with simulations in networks of coupled Chua's circuits

    A distributed accelerated gradient algorithm for distributed model predictive control of a hydro power valley

    Full text link
    A distributed model predictive control (DMPC) approach based on distributed optimization is applied to the power reference tracking problem of a hydro power valley (HPV) system. The applied optimization algorithm is based on accelerated gradient methods and achieves a convergence rate of O(1/k^2), where k is the iteration number. Major challenges in the control of the HPV include a nonlinear and large-scale model, nonsmoothness in the power-production functions, and a globally coupled cost function that prevents distributed schemes to be applied directly. We propose a linearization and approximation approach that accommodates the proposed the DMPC framework and provides very similar performance compared to a centralized solution in simulations. The provided numerical studies also suggest that for the sparsely interconnected system at hand, the distributed algorithm we propose is faster than a centralized state-of-the-art solver such as CPLEX

    Plug-and-Play Model Predictive Control based on robust control invariant sets

    Get PDF
    In this paper we consider a linear system represented by a coupling graph between subsystems and propose a distributed control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. Most importantly, as in Riverso et al., 2012 our design procedure enables plug-and-play (PnP) operations, meaning that (i) the addition or removal of subsystems triggers the design of local controllers associated to successors to the subsystem only and (ii) the synthesis of a local controller for a subsystem requires information only from predecessors of the subsystem and it can be performed using only local computational resources. Our method hinges on local tube MPC controllers based on robust control invariant sets and it advances the PnP design procedure proposed in Riverso et al., 2012 in several directions. Quite notably, using recent results in the computation of robust control invariant sets, we show how critical steps in the design of a local controller can be solved through linear programming. Finally, an application of the proposed control design procedure to frequency control in power networks is presented
    • …
    corecore