8,114 research outputs found

    User-Antenna Selection for Physical-Layer Network Coding based on Euclidean Distance

    Full text link
    In this paper, we present the error performance analysis of a multiple-input multiple-output (MIMO) physical-layer network coding (PNC) system with two different user-antenna selection (AS) schemes in asymmetric channel conditions. For the first antenna selection scheme (AS1), where the user-antenna is selected in order to maximize the overall channel gain between the user and the relay, we give an explicit analytical proof that for binary modulations, the system achieves full diversity order of min(NA,NB)×NRmin(N_A , N_B ) \times N_R in the multiple-access (MA) phase, where NAN_A, NBN_B and NRN_R denote the number of antennas at user AA, user BB and relay RR respectively. We present a detailed investigation of the diversity order for the MIMO-PNC system with AS1 in the MA phase for any modulation order. A tight closed-form upper bound on the average SER is also derived for the special case when NR=1N_R = 1, which is valid for any modulation order. We show that in this case the system fails to achieve transmit diversity in the MA phase, as the system diversity order drops to 11 irrespective of the number of transmit antennas at the user nodes. Additionally, we propose a Euclidean distance (ED) based user-antenna selection scheme (AS2) which outperforms the first scheme in terms of error performance. Moreover, by deriving upper and lower bounds on the diversity order for the MIMO-PNC system with AS2, we show that this system enjoys both transmit and receive diversity, achieving full diversity order of min(NA,NB)×NR\min(N_A, N_B) \times N_R in the MA phase for any modulation order. Monte Carlo simulations are provided which confirm the correctness of the derived analytical results.Comment: IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1709.0445

    Capacity of Coded Index Modulation

    Full text link
    We consider the special case of index coding over the Gaussian broadcast channel where each receiver has prior knowledge of a subset of messages at the transmitter and demands all the messages from the source. We propose a concatenated coding scheme for this problem, using an index code for the Gaussian channel as an inner code/modulation to exploit side information at the receivers, and an outer code to attain coding gain against the channel noise. We derive the capacity region of this scheme by viewing the resulting channel as a multiple-access channel with many receivers, and relate it to the 'side information gain' -- which is a measure of the advantage of a code in utilizing receiver side information -- of the inner index code/modulation. We demonstrate the utility of the proposed architecture by simulating the performance of an index code/modulation concatenated with an off-the-shelf convolutional code through bit-interleaved coded-modulation.Comment: To appear in Proc. IEEE Int. Symp. Inf. Theory (ISIT) 2015, Hong Kong, Jun. 2015. 5 pages, 4 figure

    Application of Expurgated PPM to Indoor Visible Light Communications - Part II: Access Networks

    Full text link
    Providing network access for multiple users in a visible light communication (VLC) system that utilizes white light emitting diodes (LED) as sources requires new networking techniques adapted to the lighting features. In this paper we introduce two multiple access techniques using expurgated PPM (EPPM) that can be implemented using LEDs and support lighting features such as dimming. Multilevel symbols are used to provide M-ary signaling for multiple users using multilevel EPPM (MEPPM). Using these multiple-access schemes we are able to control the optical peak to average power ratio (PAPR) in the system, and hereby control the dimming level. In the first technique, the M-ary data of each user is first encoded using an optical orthogonal code (OOC) assigned to the user, and the result is fed into a EPPM encoder to generate a multilevel signal. The second multiple access method uses sub-sets of the EPPM constellation to apply MEPPM to the data of each user. While the first approach has a larger Hamming distance between the symbols of each user, the latter can provide higher bit-rates for users in VLC systems using bandwidth-limited LEDs.Comment: Journal of Lightwave Technology. arXiv admin note: substantial text overlap with arXiv:1308.074

    High-Speed Visible Light Indoor Networks Based on Optical Orthogonal Codes and Combinatorial Designs

    Full text link
    Interconnecting devices in an indoor environment using the illumination system and white light emitting diodes (LED) requires adaptive networking techniques that can provide network access for multiple users. Two techniques based on multilevel signaling and optical orthogonal codes (OOC) are explored in this paper in order to provide simultaneous multiple access in an indoor multiuser network. Balanced incomplete block designs (BIBD) are used to construct multilevel symbols for M-ary signaling. Using these multilevel symbols we are able to control the optical peak to average power ratio (PAPR) in the system, and hereby control the dimming level. In the first technique, the M-ary data of each user is first encoded using the OOC codeword that is assigned to that user, and then it is fed into a BIBD encoder to generate a multilevel signal. The second multiple access method uses sub-sets of a BIBD code to apply multilevel expurgated pulse-position modulation (MEPPM) to the data of each user. While the first approach has a larger Hamming distance between the symbols of each user, the latter can provide higher bit-rates for users in VLC systems with bandwidth-limited LEDs
    corecore