11,970 research outputs found

    Characterizing human collective behaviours of COVID-19 in Hong Kong

    Full text link
    People are likely to engage in collective behaviour online during extreme events, such as the COVID-19 crisis, to express their awareness, actions and concerns. Hong Kong has implemented stringent public health and social measures (PHSMs) to curb COVID-19 epidemic waves since the first COVID-19 case was confirmed on 22 January 2020. People are likely to engage in collective behaviour online during extreme events, such as the COVID-19 crisis, to express their awareness, actions and concerns. Here, we offer a framework to evaluate interactions among individuals emotions, perception, and online behaviours in Hong Kong during the first two waves (February to June 2020) and found a strong correlation between online behaviours of Google search and the real-time reproduction numbers. To validate the model output of risk perception, we conducted 10 rounds of cross-sectional telephone surveys from February 1 through June 20 in 2020 to quantify risk perception levels over time. Compared with the survey results, the estimates of the risk perception of individuals using our network-based mechanistic model capture 80% of the trend of people risk perception (individuals who worried about being infected) during the studied period. We may need to reinvigorate the public by engaging people as part of the solution to live their lives with reduced risk

    Early Warning Analysis for Social Diffusion Events

    Get PDF
    There is considerable interest in developing predictive capabilities for social diffusion processes, for instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or accurate forecasting of the ultimate reach of potentially viral ideas or behaviors. This paper proposes a new approach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may depend crucially upon the way the early dynamics of the process interacts with the underlying network's community structure and core-periphery structure. This theoretical finding provides the foundations for developing a machine learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation of the propagation of political memes over social media networks. Additionally, we illustrate the potential of the approach for security informatics applications through case studies involving early warning analysis of large-scale protests events and politically-motivated cyber attacks
    • …
    corecore