7,044 research outputs found

    NOVEL COMPUTATIONAL METHODS FOR TRANSCRIPT RECONSTRUCTION AND QUANTIFICATION USING RNA-SEQ DATA

    Get PDF
    The advent of RNA-seq technologies provides an unprecedented opportunity to precisely profile the mRNA transcriptome of a specific cell population. It helps reveal the characteristics of the cell under the particular condition such as a disease. It is now possible to discover mRNA transcripts not cataloged in existing database, in addition to assessing the identities and quantities of the known transcripts in a given sample or cell. However, the sequence reads obtained from an RNA-seq experiment is only a short fragment of the original transcript. How to recapitulate the mRNA transcriptome from short RNA-seq reads remains a challenging problem. We have proposed two methods directly addressing this challenge. First, we developed a novel method MultiSplice to accurately estimate the abundance of the well-annotated transcripts. Driven by the desire of detecting novel isoforms, a max-flow-min-cost algorithm named Astroid is designed for simultaneously discovering the presence and quantities of all possible transcripts in the transcriptome. We further extend an \emph{ab initio} pipeline of transcriptome analysis to large-scale dataset which may contain hundreds of samples. The effectiveness of proposed methods has been supported by a series of simulation studies, and their application on real datasets suggesting a promising opportunity in reconstructing mRNA transcriptome which is critical for revealing variations among cells (e.g. disease vs. normal)

    MSIQ: Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform Quantification

    Full text link
    Next-generation RNA sequencing (RNA-seq) technology has been widely used to assess full-length RNA isoform abundance in a high-throughput manner. RNA-seq data offer insight into gene expression levels and transcriptome structures, enabling us to better understand the regulation of gene expression and fundamental biological processes. Accurate isoform quantification from RNA-seq data is challenging due to the information loss in sequencing experiments. A recent accumulation of multiple RNA-seq data sets from the same tissue or cell type provides new opportunities to improve the accuracy of isoform quantification. However, existing statistical or computational methods for multiple RNA-seq samples either pool the samples into one sample or assign equal weights to the samples when estimating isoform abundance. These methods ignore the possible heterogeneity in the quality of different samples and could result in biased and unrobust estimates. In this article, we develop a method, which we call "joint modeling of multiple RNA-seq samples for accurate isoform quantification" (MSIQ), for more accurate and robust isoform quantification by integrating multiple RNA-seq samples under a Bayesian framework. Our method aims to (1) identify a consistent group of samples with homogeneous quality and (2) improve isoform quantification accuracy by jointly modeling multiple RNA-seq samples by allowing for higher weights on the consistent group. We show that MSIQ provides a consistent estimator of isoform abundance, and we demonstrate the accuracy and effectiveness of MSIQ compared with alternative methods through simulation studies on D. melanogaster genes. We justify MSIQ's advantages over existing approaches via application studies on real RNA-seq data from human embryonic stem cells, brain tissues, and the HepG2 immortalized cell line

    Bayesian Modeling Approaches for Temporal Dynamics in RNA-seq Data

    Get PDF
    Analysis of differential expression has been a central role to address the variety of biological questions in the manner to characterize abnormal patterns of cellular and molecular functions for last decades. To date, identification of differentially expressed genes and isoforms has been more intensively focused on temporal dynamics over a series of time points. Bayesian strategies have been successfully employed to uncover the complexity of biological interest with the methodological and analytical perspectives for the various platforms of high-throughput data, for instance, methods in differential expression analysis and network modules in transcriptome data, peak-callers in ChipSeq data, target prediction in microRNA data and meta-methods between different platforms. In this chapter, we will discuss how our methodological works based on Bayesian models address important questions to arise in the architecture of temporal dynamics in RNA-seq data
    • …
    corecore