11,915 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

    Full text link
    Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Safe Zeroth-Order Optimization Using Quadratic Local Approximations

    Full text link
    This paper addresses black-box smooth optimization problems, where the objective and constraint functions are not explicitly known but can be queried. The main goal of this work is to generate a sequence of feasible points converging towards a KKT primal-dual pair. Assuming to have prior knowledge on the smoothness of the unknown objective and constraints, we propose a novel zeroth-order method that iteratively computes quadratic approximations of the constraint functions, constructs local feasible sets and optimizes over them. Under some mild assumptions, we prove that this method returns an η\eta-KKT pair (a property reflecting how close a primal-dual pair is to the exact KKT condition) within O(1/η2)O({1}/{\eta^{2}}) iterations. Moreover, we numerically show that our method can achieve faster convergence compared with some state-of-the-art zeroth-order approaches. The effectiveness of the proposed approach is also illustrated by applying it to nonconvex optimization problems in optimal control and power system operation.Comment: arXiv admin note: text overlap with arXiv:2211.0264

    Central-provincial Politics and Industrial Policy-making in the Electric Power Sector in China

    Get PDF
    In addition to the studies that provide meaningful insights into the complexity of technical and economic issues, increasing studies have focused on the political process of market transition in network industries such as the electric power sector. This dissertation studies the central–provincial interactions in industrial policy-making and implementation, and attempts to evaluate the roles of Chinese provinces in the market reform process of the electric power sector. Market reforms of this sector are used as an illustrative case because the new round of market reforms had achieved some significant breakthroughs in areas such as pricing reform and wholesale market trading. Other policy measures, such as the liberalization of the distribution market and cross-regional market-building, are still at a nascent stage and have only scored moderate progress. It is important to investigate why some policy areas make greater progress in market reforms than others. It is also interesting to examine the impacts of Chinese central-provincial politics on producing the different market reform outcomes. Guangdong and Xinjiang are two provinces being analyzed in this dissertation. The progress of market reforms in these two provinces showed similarities although the provinces are very different in terms of local conditions such as the stages of their economic development and energy structures. The actual reform can be understood as the outcomes of certain modes of interactions between the central and provincial actors in the context of their particular capabilities and preferences in different policy areas. This dissertation argues that market reform is more successful in policy areas where the central and provincial authorities are able to engage mainly in integrative negotiations than in areas where they engage mainly in distributive negotiations

    DiffRF: Rendering-Guided 3D Radiance Field Diffusion

    Full text link
    We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.Comment: Project page: https://sirwyver.github.io/DiffRF/ Video: https://youtu.be/qETBcLu8SUk - CVPR 2023 Highlight - updated evaluations after fixing initial data mapping error on all method

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Message Journal, Issue 5: COVID-19 SPECIAL ISSUE Capturing visual insights, thoughts and reflections on 2020/21 and beyond...

    Get PDF
    If there is a theme running through the Message Covid-19 special issue, it is one of caring. Of our own and others’ resilience and wellbeing, of friendship and community, of students, practitioners and their futures, of social justice, equality and of doing the right thing. The veins of designing with care run through the edition, wide and deep. It captures, not designers as heroes, but those with humble views, exposing the need to understand a diversity of perspectives when trying to comprehend the complexity that Covid-19 continues to generate. As graphic designers, illustrators and visual communicators, contributors have created, documented, written, visualised, reflected, shared, connected and co-created, designed for good causes and re-defined what it is to be a student, an academic and a designer during the pandemic. This poignant period in time has driven us, through isolation, towards new rules of living, and new ways of working; to see and map the world in a different light. A light that is uncertain, disjointed, and constantly being redefined. This Message issue captures responses from the graphic communication design community in their raw state, to allow contributors to communicate their experiences through both their written and visual voice. Thus, the reader can discern as much from the words as the design and visualisations. Through this issue a substantial number of contributions have focused on personal reflection, isolation, fear, anxiety and wellbeing, as well as reaching out to community, making connections and collaborating. This was not surprising in a world in which connection with others has often been remote, and where ‘normal’ social structures of support and care have been broken down. We also gain insight into those who are using graphic communication design to inspire and capture new ways of teaching and learning, developing themselves as designers, educators, and activists, responding to social justice and to do good; gaining greater insight into society, government actions and conspiracy. Introduction: Victoria Squire - Coping with Covid: Community, connection and collaboration: James Alexander & Carole Evans, Meg Davies, Matthew Frame, Chae Ho Lee, Alma Hoffmann, Holly K. Kaufman-Hill, Joshua Korenblat, Warren Lehrer, Christine Lhowe, Sara Nesteruk, Cat Normoyle & Jessica Teague, Kyuha Shim. - Coping with Covid: Isolation, wellbeing and hope: Sadia Abdisalam, Tom Ayling, Jessica Barness, Megan Culliford, Stephanie Cunningham, Sofija Gvozdeva, Hedzlynn Kamaruzzaman, Merle Karp, Erica V. P. Lewis, Kelly Salchow Macarthur, Steven McCarthy, Shelly Mayers, Elizabeth Shefrin, Angelica Sibrian, David Smart, Ane Thon Knutsen, Isobel Thomas, Darryl Westley. - Coping with Covid: Pedagogy, teaching and learning: Bernard J Canniffe, Subir Dey, Aaron Ganci, Elizabeth Herrmann, John Kilburn, Paul Nini, Emily Osborne, Gianni Sinni & Irene Sgarro, Dave Wood, Helena Gregory, Colin Raeburn & Jackie Malcolm. - Coping with Covid: Social justice, activism and doing good: Class Action Collective, Xinyi Li, Matt Soar, Junie Tang, Lisa Winstanley. - Coping with Covid: Society, control and conspiracy: Diana Bîrhală, Maria Borțoi, Patti Capaldi, Tânia A. Cardoso, Peter Gibbons, Bianca Milea, Rebecca Tegtmeyer, Danne Wo

    Demand Response Applications for the Operation of Smart Natural Gas Systems

    Get PDF
    This chapter discusses different aspects related to the operation of natural gas systems in the framework of the new configuration of energy systems based on the smart grid concept. First of all, different experiences performed worldwide regarding the application of demand response principles to increase the efficiency and operability of natural gas networks are presented. Next, the characteristics of the natural gas system to be configured according to the smart grid architecture are discussed, including the necessary agents for the proper functioning of such infrastructure. After that, the current state of installation of gas smart meters in some European countries is presented, according to the massive rollout process promoted by the European Union. Barriers that prevent the full exploitation of demand response resources related to natural gas systems are presented in the next section. After that, technical constraints which may be solved by using demand response are presented. Finally, last tendencies related to the development of natural gas systems, such as the injection of hydrogen, are considered

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%
    • …
    corecore