276 research outputs found

    Multi-party holomeetings: toward a new era of low-cost volumetric holographic meetings in virtual reality

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fueled by advances in multi-party communications, increasingly mature immersive technologies being adopted, and the COVID-19 pandemic, a new wave of social virtual reality (VR) platforms have emerged to support socialization, interaction, and collaboration among multiple remote users who are integrated into shared virtual environments. Social VR aims to increase levels of (co-)presence and interaction quality by overcoming the limitations of 2D windowed representations in traditional multi-party video conferencing tools, although most existing solutions rely on 3D avatars to represent users. This article presents a social VR platform that supports real-time volumetric holographic representations of users that are based on point clouds captured by off-the-shelf RGB-D sensors, and it analyzes the platform’s potential for conducting interactive holomeetings (i.e., holoconferencing scenarios). This work evaluates such a platform’s performance and readiness for conducting meetings with up to four users, and it provides insights into aspects of the user experience when using single-camera and low-cost capture systems in scenarios with both frontal and side viewpoints. Overall, the obtained results confirm the platform’s maturity and the potential of holographic communications for conducting interactive multi-party meetings, even when using low-cost systems and single-camera capture systems in scenarios where users are sitting or have a limited translational movement along the X, Y, and Z axes within the 3D virtual environment (commonly known as 3 Degrees of Freedom plus, 3DoF+).The authors would like to thank the members of the EU H2020 VR-Together consortium for their valuable contributions, especially Marc Martos and Mohamad Hjeij for their support in developing and evaluating tasks. This work has been partially funded by: the EU’s Horizon 2020 program, under agreement nº 762111 (VR-Together project); by ACCIÓ (Generalitat de Catalunya), under agreement COMRDI18-1-0008 (ViVIM project); and by Cisco Research and the Silicon Valley Community Foundation, under the grant Extended Reality Multipoint Control Unit (ID: 1779376). The work by Mario Montagud has been additionally funded by Spain’s Agencia Estatal de Investigación under grant RYC2020-030679-I (AEI / 10.13039/501100011033) and by Fondo Social Europeo. The work of David Rincón was supported by Spain’s Agencia Estatal de Investigación within the Ministerio de Ciencia e Innovación under Project PID2019-108713RB-C51 MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities

    Get PDF
    Moving from a set of independent virtual worlds to an integrated network of 3D virtual worlds or Metaverse rests on progress in four areas: immersive realism, ubiquity of access and identity, interoperability, and scalability. For each area, the current status and needed developments in order to achieve a functional Metaverse are described. Factors that support the formation of a viable Metaverse, such as institutional and popular interest and ongoing improvements in hardware performance, and factors that constrain the achievement of this goal, including limits in computational methods and unrealized collaboration among virtual world stakeholders and developers, are also considered

    Shifting the Focus: The Role of Presence in Reconceptualising the Design Process

    Get PDF
    In this paper the relationship between presence and imaging is examined with the view to establish how our understanding of imaging, and subsequently the design process, may be reconceptualised to give greater focus to its experiential potential. First, the paper outlines the research project contributing to the discussion. Then, it provides brief overviews of research on both imaging and presence in the process highlighting the narrow conceptions of imaging (and the recognition of the need for further research) compared to the more holistic and experiential understandings of presence. The paper concludes with an argument and proposed study for exploring the role of digital technology and presence in extending the potential of imaging and its role in the design process. As indicated in the DRS Conference Theme, this paper focuses “…on what people experience and the systems and actions that create those experiences.” Interface designers, information architects and interactive media artists understand the powerful influence of experience in design. ‘Experience design’ is a community of practice driven by individuals within digital based disciplines where the belief is that understanding people is essential to any successful design in any medium and that “…experience is the personal connection with the moment and… every aspect of living is an experience, whether we are the creators or simply chance participants” (Shedroff, 2001, p. 5). Keywords: Design, Design Process, Presence, Imaging, Grounded Theory</p
    corecore