205 research outputs found

    dReDBox: Materializing a full-stack rack-scale system prototype of a next-generation disaggregated datacenter

    Get PDF
    Current datacenters are based on server machines, whose mainboard and hardware components form the baseline, monolithic building block that the rest of the system software, middleware and application stack are built upon. This leads to the following limitations: (a) resource proportionality of a multi-tray system is bounded by the basic building block (mainboard), (b) resource allocation to processes or virtual machines (VMs) is bounded by the available resources within the boundary of the mainboard, leading to spare resource fragmentation and inefficiencies, and (c) upgrades must be applied to each and every server even when only a specific component needs to be upgraded. The dRedBox project (Disaggregated Recursive Datacentre-in-a-Box) addresses the above limitations, and proposes the next generation, low-power, across form-factor datacenters, departing from the paradigm of the mainboard-as-a-unit and enabling the creation of function-block-as-a-unit. Hardware-level disaggregation and software-defined wiring of resources is supported by a full-fledged Type-1 hypervisor that can execute commodity virtual machines, which communicate over a low-latency and high-throughput software-defined optical network. To evaluate its novel approach, dRedBox will demonstrate application execution in the domains of network functions virtualization, infrastructure analytics, and real-time video surveillance.This work has been supported in part by EU H2020 ICTproject dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Implementation and testing of MHz-range digital conversion of phase current measurements for electric drives. Implementazione e sperimentazione di una conversione digitale alla frequenza dei MHz delle misure di corrente di fase in azionamenti elettrici

    Get PDF
    Questo lavoro di tesi consiste nella realizzazione di un sistema di misura di corrente e tensione di uno statore in un azionamento elettrico. I segnali misurati vengono campionati ad alta frequenza, nel range dei MHz. Per realizzare questa conversione ad alta frequenza è stata utilizzata la scheda di conversione A/D FMC112 abbinata con una scheda di valutazione della Xilinx, la ZC702, la quale è equipaggiata con un SoC Zynq

    Design of Digital Advanced Systems Based on Programmable System on Chip

    Get PDF
    This chapter fills up an advanced analysis of the state-of-the-art design in programmable SoC systems, giving a critical overall vision for every designer to implement real time operating systems and concurrent processing. The content of the chapter is divided in the next four main sections. First the evolution timeline of FPGA based systems is covered from its beginning until the last AP SoC chips. They are complex devices and it is necessary to have a well-known understanding to utilise them in the more efficient form possible. The more important advance digital systems structures and architectures are described. The embedded AP SoCs are analysed and main design methodologies are covered, focusing in hardware and co-design strategies. In this section is described the development of a real open source application that covers the fundamental parts in the design of a SoC system, ranging from the hardware development until the software design involving the embedded operating system and the user interface application. Finally, the system described in the last section is tested in a real scientific experiment and the results are evaluated

    FPGA Based Diagnostics for the Mega-Amp Spherical Tokamak Upgrade

    Get PDF
    Terrestrial fusion power is a low carbon alternative to conventional power sources with reduced waste and proliferation concerns relative to fission power. The complexity of fusion research devices means that many high performance diagnostics are necessary to investigate the underlying physics of the environment. Field Programmable Gate Array technology provides a powerful and flexible option when designing bespoke instrumentation

    Extension of the L1Calo PreProcessor System for the ATLAS Phase-I Calorimeter Trigger Upgrade

    Get PDF
    For the Run-3 data-taking period at the Large Hadron Collider (LHC), the hardware- based Level-1 Calorimeter Trigger (L1Calo) of the ATLAS experiment was upgraded. Through new and sophisticated algorithms, the upgrade will increase the trigger performance in a challenging, high-pileup environment while maintaining low selection thresholds. The Tile Rear Extension (TREX) modules are the latest addition to the L1Calo PreProcessor system. Hosting state-of-the-art FPGAs and high-speed optical transceivers, the TREX modules provide digitised hadronic transverse energies from the ATLAS Tile Calorimeter to the new feature extractor (FEX) processors every 25 ns. In addition, the modules are designed to maintain compatibility with the original trigger processors. The system of 32 TREX modules has been developed, produced and successfully installed in ATLAS. The thesis describes the functional implementation of the modules and the detailed integration and commissioning into the ATLAS detector

    NorSat-3 – Next Generation Norwegian Maritime Surveillance

    Get PDF
    The NorSat-3 mission, with expected launch Q2/Q3 2020, aims to enhance the Norwegian recognized maritime picture with an experimental ship navigational radar detector (NRD) in addition to an AIS receiver. The NRD aims to geolocate ship navigation radars within 10 km circular error probable and verify AIS positions. The 10º NRD antenna field of view will nominally be pointed towards the horizon in order to maximize the area coverage and view of the ships’ navigation radar main lobe. Operating in a near polar low earth orbit the Norwegian area of interest may be covered between 10 and 15 times per day if pointing the antenna suitably. Achieving the desired geolocation accuracy and area coverage, while minimizing polarization loss, requires a highly capable attitude determination and control system. The signal processing capabilities of the Zynq Ultrascale+ system-on-chip enables the radar signal processing in orbit, although also requiring a large platform power generation capability. The mission, payloads and platform are described in this paper, including some of the lessons learned. All flight subsystems and payloads have completed their relevant unit environmental tests, including proton irradiation of NRD electronics. Final system verification and environmental testing begins August 2019, with a target flight readiness review November 2019

    CubeSat Data Transmission and Storage Throughput Optimization Through the Use of a Zynq SoC Based CubeSat Science Instrument Interface Electronics Board

    Get PDF
    The CubeSat standard sprang from the desire to create a satellite standard that would open the doors for universities and other lower budget research institutions by making it more feasible to get their work into space. Since then, many other institutions and industries have been adopting variations on the standard for their own use. As more people are seeking out to use the CubeSat standard as their main bus, the standards and practices of the community have grown and expanded and with this growth, new challenges have been created. One such challenge is the bandwidth limitation in the RF-downlink. When carrying payloads requiring what might seem to be a relatively small (science data) bandwidth requirement (on the order of thousands of bps), the RF-link to ground is overloaded. Many approaches in the past have been put forth to help alleviate this issue, unfortunately, none have been fully adopted. This paper presents a solution that takes advantage of new technology yet to be fully exploited in space applications. The key to the solution lies in removing the bandwidth requirements by enabling onboard post-data processing and compression. In order to achieve the high computational needs, while minimizing power consumption, a Xilinx Zynq-7000 SoC is used, creating a highly-programmable, open integration device. This report outlines the design, fabrication and testing of this solution. The completion of the Zynq Processing System CubeSat Science Instrument Interface Electronics Board (or ZPS-Board), ultimately demonstrates the feasibility of this solution. Additionally, this research is funded by NASA’s JPL, with secondary motives for the creating of a space application Zynq-7000 SoC based product. Upon successful completion of the ZPS-Board, the product creates a platform for JPL to perform environmental testing in order to study the effects and performance characteristics of the Zynq in space applications
    corecore