41,150 research outputs found

    Multi-layer virtual transport network design and management

    Full text link
    Nowadays there is an increasing need for a general paradigm that can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. On the other hand, service overlay networks and virtual networks are widely used to overcome deficiencies of the Internet. However, most overlay/virtual networks are single-layered and lack dynamic scope management. Furthermore, how to solve the joint problem of designing and mapping the overlay/virtual network requests for better application and network performance remains an understudied area. In this thesis, in response to limitations of current SDN management solutions and of the traditional single-layer overlay/virtual network design, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional overlay/virtual network model which mainly focuses on routing/tunneling, our VTN approach provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, i.e., it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to meet application requirements. Our approach inherently provides a multi-layer solution for overlay/virtual network design. The contributions of this thesis are threefold: (1) we propose a novel VTN-based management approach to enterprise network management; (2) we develop a framework for multi-layer VTN design and instantiate it to meet specific application and network goals; and (3) we design and prototype a VTN-based management architecture. Our simulation and experimental results demonstrate the flexibility of our VTN-based management approach and its performance advantages

    Multi-layered virtual transport network design and management (PhD Thesis)

    Full text link
    Nowadays there is an increasing need for a general paradigm that can simplify network management and further enable network innovations. Softwa re Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. On the other hand, service overlay networks and virtual networks are widely usedto overcome deficiencies of the Internet. However, most over lay/virtual networks are single- layered and lack dynamic scope management. Furthermore, how to solve the joint problem of designing and mapping the overlay/virtual network requests for better application and network performance remains an understudied area. In this thesis, in response to limitations of current SDN management solutions and of the traditional single-layer overlay/virtual network design, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of opera-tion). Different from the traditional overlay/virtual network model which mainly focuses on routing/tunneling, our VTN approach provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, i.e., it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to meet application requirements. Our approach inherently provides a multi-layer solution for overlay/virtual network design. The contributions of this thesis are threefold: (1) we propose a novel VTN-based management approach to enterprise network management; (2) we develop a framework for multi-layer VTN design and instantiate it to meet specific application and network goals; and (3) we design and prototype a VTN-based management architecture. Our simulation and experimental results demonstrate the flexibility of our VTN-based management approach and its performance advantages

    Multi-layer virtual transport network design

    Full text link
    Service overlay networks and network virtualization enable multiple overlay/virtual networks to run over a common physical network infrastructure. They are widely used to overcome deficiencies of the Internet (e.g., resiliency, security and QoS guarantees). However, most overlay/virtual networks are used for routing/tunneling purposes, and not for providing scoped transport flows (involving all mechanisms such as error and flow control, resource allocation, etc.), which can allow better network resource allocation and utilization. Most importantly, the design of overlay/virtual networks is mostly single-layered, and lacks dynamic scope management, which is important for application and network management. In response to these limitations, we propose a multi-layer approach to Virtual Transport Network (VTN) design. This design is a key part of VTN-based network management, where network management is done via managing various VTNs over different scopes (i.e., ranges of operation). Our simulation and experimental results show that our multi-layer approach to VTN design can achieve better performance compared to the traditional single-layer design used for overlay/virtual networks.This work has been partly supported by National Science Foundation awards: CNS-0963974 and CNS-1346688

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    Overlay networks for smart grids

    Get PDF

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable
    • 

    corecore