1,588 research outputs found

    Discovering Mixtures of Structural Causal Models from Time Series Data

    Full text link
    In fields such as finance, climate science, and neuroscience, inferring causal relationships from time series data poses a formidable challenge. While contemporary techniques can handle nonlinear relationships between variables and flexible noise distributions, they rely on the simplifying assumption that data originates from the same underlying causal model. In this work, we relax this assumption and perform causal discovery from time series data originating from mixtures of different causal models. We infer both the underlying structural causal models and the posterior probability for each sample belonging to a specific mixture component. Our approach employs an end-to-end training process that maximizes an evidence-lower bound for data likelihood. Through extensive experimentation on both synthetic and real-world datasets, we demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks, particularly when the data emanates from diverse underlying causal graphs. Theoretically, we prove the identifiability of such a model under some mild assumptions

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes
    • …
    corecore