28 research outputs found

    Fast ReRoute on Programmable Switches

    Get PDF
    Highly dependable communication networks usually rely on some kind of Fast Re-Route (FRR) mechanism which allows to quickly re-route traffic upon failures, entirely in the data plane. This paper studies the design of FRR mechanisms for emerging reconfigurable switches. Our main contribution is an FRR primitive for programmable data planes, PURR, which provides low failover latency and high switch throughput, by avoiding packet recirculation. PURR tolerates multiple concurrent failures and comes with minimal memory requirements, ensuring compact forwarding tables, by unveiling an intriguing connection to classic ``string theory'' (i.e., stringology), and in particular, the shortest common supersequence problem. PURR is well-suited for high-speed match-action forwarding architectures (e.g., PISA) and supports the implementation of a broad variety of FRR mechanisms. Our simulations and prototype implementation (on an FPGA and a Tofino switch) show that PURR improves TCAM memory occupancy by a factor of 1.5x-10.8x compared to a naĂŻve encoding when implementing state-of-the-art FRR mechanisms. PURR also improves the latency and throughput of datacenter traffic up to a factor of 2.8x-5.5x and 1.2x-2x, respectively, compared to approaches based on recirculating packets

    Topology forming and optimization framework for heterogeneous wireless back-haul networks supporting unidirectional technologies

    Get PDF
    Wireless operators, in developed or emerging regions, must support triple-play service offerings as demanded by the market or mandated by regulatory bodies through so-called Universal Service Obligations (USOs). Since individual operators might face different constraints such as available spectrum licenses, technologies, cost structures or a low energy footprint, the EU FP7 CARrier grade wireless MEsh Network (CARMEN) project has developed a carrier-grade heterogeneous multi-radio back-haul architecture which may be deployed to extend, complement or even replace traditional operator equipment. To support offloading of live triple-play content to broadcast-optimized, e.g., DVB-T, overlay cells, this heterogeneous wireless back-haul architecture integrates unidirectional broadcast technologies. In order to manage the physical and logical resources of such a network, a centralized coordinator approach has been chosen, where no routing state is kept at plain WiBACK Nodes (WNs) which merely store QoS-aware MPLS forwarding state. In this paper we present our Unidirectional Technology (UDT)-aware design of the centralized Topology Management Function (TMF), which provides a framework for different topology and spectrum allocation optimization strategies and algorithms to be implemented. Following the validation of the design, we present evaluation results using a hybrid local/centralized topology optimizer showing that our TMF design supports the reliable forming of optimized topologies as well as the timely recovery from node failures.Federal Ministry of Education and Research of the Federal Republic of German (F¨orderkennzeichen 01 BU1116,SolarMesh Energieeffizientes,autonomesgroßfl¨achiges Sprach- undDatenfunknetzmitflacher IP-Architektur

    Understanding a large-scale IPTV network via system logs

    Get PDF
    Recently, there has been a global trend among the telecommunication industry on the rapid deployment of IPTV (Internet Protocol Television) infrastructure and services. While the industry rushes into the IPTV era, the comprehensive understanding of the status and dynamics of IPTV network lags behind. Filling this gap requires in-depth analysis of large amounts of measurement data across the IPTV network. One type of the data of particular interest is device or system log, which has not been systematically studied before. In this dissertation, we will explore the possibility of utilizing system logs to serve a wide range of IPTV network management purposes including health monitoring, troubleshooting and performance evaluation, etc. In particular, we develop a tool to convert raw router syslogs to meaningful network events. In addition, by analyzing set-top box (STB) logs, we propose a series of models to capture both channel popularity and dynamics, and users' activity on the IPTV network.Ph.D.Committee Chair: Jun Xu; Committee Member: Jia Wang; Committee Member: Mostafa H. Ammar; Committee Member: Nick Feamster; Committee Member: Xiaoli M

    Rethinking Routing and Peering in the era of Vertical Integration of Network Functions

    Get PDF
    Content providers typically control the digital content consumption services and are getting the most revenue by implementing an all-you-can-eat model via subscription or hyper-targeted advertisements. Revamping the existing Internet architecture and design, a vertical integration where a content provider and access ISP will act as unibody in a sugarcane form seems to be the recent trend. As this vertical integration trend is emerging in the ISP market, it is questionable if existing routing architecture will suffice in terms of sustainable economics, peering, and scalability. It is expected that the current routing will need careful modifications and smart innovations to ensure effective and reliable end-to-end packet delivery. This involves new feature developments for handling traffic with reduced latency to tackle routing scalability issues in a more secure way and to offer new services at cheaper costs. Considering the fact that prices of DRAM or TCAM in legacy routers are not necessarily decreasing at the desired pace, cloud computing can be a great solution to manage the increasing computation and memory complexity of routing functions in a centralized manner with optimized expenses. Focusing on the attributes associated with existing routing cost models and by exploring a hybrid approach to SDN, we also compare recent trends in cloud pricing (for both storage and service) to evaluate whether it would be economically beneficial to integrate cloud services with legacy routing for improved cost-efficiency. In terms of peering, using the US as a case study, we show the overlaps between access ISPs and content providers to explore the viability of a future in terms of peering between the new emerging content-dominated sugarcane ISPs and the healthiness of Internet economics. To this end, we introduce meta-peering, a term that encompasses automation efforts related to peering – from identifying a list of ISPs likely to peer, to injecting control-plane rules, to continuous monitoring and notifying any violation – one of the many outcroppings of vertical integration procedure which could be offered to the ISPs as a standalone service

    Network design for tolerating multiple link failures using Fast Re-route (FRR)

    No full text
    corecore