652 research outputs found

    Traffic engineering eye diagram

    Get PDF
    It is said that a picture is worth a thousand words - this statement also applies to networking topics. Thus, to effectively monitor network performance we need tools which present the performance metrics in a graphical way which is also clear and informative. We propose a tool for this purpose which we call the traffic engineering eye diagram (TEED). Eye diagrams are used in digital communications to analyse the quality of a digital signal; the TEED can similarly he used in the traffic engineering field to analyse the load balancing ability of a TE algorithm. In this paper we describe how to create such TEEDs and how to use them to analyse and compare various traffic engineering approaches

    Study of Network Traffic Analysis and Prediction

    Get PDF
    Network traffic analysis is the way toward chronicle, evaluating and examining system traffic with the end goal of execution, security as well as general system tasks and the executives. Analysis and prediction of network traffic has applications in wide far reaching set of zones and has recently pulled in noteworthy number of studies. Various types of trials are directed and condensed to distinguish different issues in existing PC arrange applications. System traffic examination and forecast is a proactive way to deal with guarantee secure, dependable and subjective system correspondence. Different systems are proposed and tested for analyzing system traffic including neural network based strategies to data mining methods. So also, different Linear and non-linear models are proposed for system traffic prediction. A few intriguing mixes of system examination and forecast strategies are actualized to achieve proficient and compelling outcomes [3]

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    Global Modeling and Prediction of Computer Network Traffic

    Full text link
    We develop a probabilistic framework for global modeling of the traffic over a computer network. This model integrates existing single-link (-flow) traffic models with the routing over the network to capture the global traffic behavior. It arises from a limit approximation of the traffic fluctuations as the time--scale and the number of users sharing the network grow. The resulting probability model is comprised of a Gaussian and/or a stable, infinite variance components. They can be succinctly described and handled by certain 'space-time' random fields. The model is validated against simulated and real data. It is then applied to predict traffic fluctuations over unobserved links from a limited set of observed links. Further, applications to anomaly detection and network management are briefly discussed
    corecore