541 research outputs found

    Strong Converse Theorems for Classes of Multimessage Multicast Networks: A R\'enyi Divergence Approach

    Full text link
    This paper establishes that the strong converse holds for some classes of discrete memoryless multimessage multicast networks (DM-MMNs) whose corresponding cut-set bounds are tight, i.e., coincide with the set of achievable rate tuples. The strong converse for these classes of DM-MMNs implies that all sequences of codes with rate tuples belonging to the exterior of the cut-set bound have average error probabilities that necessarily tend to one (and are not simply bounded away from zero). Examples in the classes of DM-MMNs include wireless erasure networks, DM-MMNs consisting of independent discrete memoryless channels (DMCs) as well as single-destination DM-MMNs consisting of independent DMCs with destination feedback. Our elementary proof technique leverages properties of the R\'enyi divergence.Comment: Submitted to IEEE Transactions on Information Theory, Jul 18, 2014. Revised on Jul 31, 201

    A quantum inspired evolutionary algorithm for dynamic multicast routing with network coding

    Get PDF
    This paper studies and models the multicast routing problem with network coding in dynamic network environment, where computational and bandwidth resources are to be jointly optimized. A quantum inspired evolutionary algorithm (QEA) is developed to address the problem above, where a restart scheme is devised for well adapting QEA for tracing the ever-changing optima in dynamic environment. Experimental results show that the proposed QEA outperforms a number of existing evolutionary algorithms in terms of the best solution obtained

    On minimizing coding operations in network coding based multicast: an evolutionary algorithm

    Get PDF
    In telecommunications networks, to enable a valid data transmission based on network coding, any intermediate node within a given network is allowed, if necessary, to perform coding operations. The more coding operations needed, the more coding resources consumed and thus the more computational overhead and transmission delay incurred. This paper investigates an efficient evolutionary algorithm to minimize the amount of coding operations required in network coding based multicast. Based on genetic algorithms, we adapt two extensions in the proposed evolutionary algorithm, namely a new crossover operator and a neighbourhood search operator, to effectively solve the highly complex problem being concerned. The new crossover is based on logic OR operations to each pair of selected parent individuals, and the resulting offspring are more likely to become feasible. The aim of this operator is to intensify the search in regions with plenty of feasible individuals. The neighbourhood search consists of two moves which are based on greedy link removal and path reconstruction, respectively. Due to the specific problem feature, it is possible that each feasible individual corresponds to a number of, rather than a single, valid network coding based routing subgraphs. The neighbourhood search is applied to each feasible individual to find a better routing subgraph that consumes less coding resource. This operator not only improves solution quality but also accelerates the convergence. Experiments have been carried out on a number of fixed and randomly generated benchmark networks. The results demonstrate that with the two extensions, our evolutionary algorithm is effective and outperforms a number of state-of-the-art algorithms in terms of the ability of finding optimal solutions

    An effective transmit packet coding with trust-based relay nodes in VANETs

    Get PDF
    ehicular ad-hoc networks (VANETs) are characterized by limited network resources such as limited bandwidth and battery capacity. Hence, it is necessary that unnecessary use of network resources (such as unnecessary packet transfers) is reduced in such networks so that the available power can be conserved for efficient multicast communications. In this paper, we have presented a Transmit Packet Coding (TPC) Network Coding in VANET to ensure reliable and efficient multicasting. With network coding, the number of transmitted packets over the network can be reduced, ensuring efficient utilization of network devices and resources. Here, the trust-based graph optimization is performed using Cuckoo search algorithm to select the secure relay nodes. The experimental results showed the superiority of the presented approach compared to the existing techniques in terms of throughput, latency, hop delay, packet delivery ratio, network decoder outage probability, and block error rate

    A nondominated sorting genetic algorithm for bi-objective network coding based multicast routing problems

    Get PDF
    Network coding is a new communication technique that generalizes routing, where, instead of simply forwarding the packets they receive, intermediate nodes are allowed to recombine (code) together some of the data packets received from different incoming links if necessary. By doing so, the maximum information flow in a network can always be achieved. However, performing coding operations (i.e. recombining data packets) incur computational overhead and delay of data processing at the corresponding nodes. In this paper, we investigate the optimization of the network coding based multicast routing problem with respect to two widely considered objectives, i.e. the cost and the delay. In general, reducing cost can result into a cheaper multicast solution for network service providers, while decreasing delay improves the service quality for users. Hence we model the problem as a bi-objective optimization problem to minimize the total cost and the maximum transmission delay of a multicast. This bi-objective optimization problem has not been considered in the literature. We adapt the Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) for the new problem by introducing two adjustments. As there are many infeasible solutions in the search space, the first adjustment is an initialization scheme to generate a population of feasible and diversified solutions. These initial solutions help to guide the search towards the Pareto-optimal front. In addition, the original NSGA-II is very likely to produce a number of solutions with identical objective values at each generation, which may seriously deteriorate the level of diversity and the optimization performance. The second adjustment is an individual delegate scheme where, among those solutions with identical objective values, only one of them is retained in the population while the others are deleted. Experimental results reveal that each adopted adjustment contributes to the adaptation of NSGA-II for the problem concerned. Moreover, the adjusted NSGA-II outperforms a number of state-of-the-art multiobjective evolutionary algorithms with respect to the quality of the obtained nondominated solutions in the conducted experiments

    An improved MOEA/D algorithm for multi-objective multicast routing with network coding

    Get PDF
    Network coding enables higher network throughput, more balanced traffic, and securer data transmission. However, complicated mathematical operations incur when packets are combined at intermediate nodes, which, if not operated properly, lead to very high network resource consumption and unacceptable delay. Therefore, it is of vital importance to minimize various network resources and end-to-end delays while exploiting promising benefits of network coding. Multicast has been used in increasingly more applications, such as video conferencing and remote education. In this paper the multicast routing problem with network coding is formulated as a multi-objective optimization problem (MOP), where the total coding cost, the total link cost and the end-to-end delay are minimized simultaneously. We adapt the multi-objective evolutionary algorithm based on decomposition (MOEA/D) for this MOP by hybridizing it with a population-based incremental learning technique which makes use of the global and historical information collected to provide additional guidance to the evolutionary search. Three new schemes are devised to facilitate the performance improvement, including a probability-based initialization scheme, a problem-specific population updating rule, and a hybridized reproduction operator. Experimental results clearly demonstrate that the proposed algorithm outperforms a number of state-of-the-art MOEAs regarding the solution quality and computational time
    • …
    corecore