1,206 research outputs found

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Seamless LTE-WiFi Architecture for Offloading the Overloaded LTE with Efficient UE Authentication

    Get PDF
    Nowadays a cellular network suffers from a data traffic load in a metropolitan area due to the enormous number of mobile devices connectivity. Therefore, the users experience many issues because of a congestion and overload at an access network such as low throughput, long latencies and network outages. Current network operator’s solutions, such as capping data usage and throttling a connection speed, have a negative effect on the user satisfaction. Therefore, alternative solutions are needed such as Access Point (AP)-based complementary network. In this paper, we use WiFi as a complementary network to Long-Term Evolution (LTE). We propose a seamless network architecture between LTE and WiFi networks, by utilizing the packet gateway (P-GW) as an IP flow anchor between LTE and WiFi to maintain a seamless connectivity. The proposed architecture has two new components, Access Network Query Protocol-Data Server (ANQP-DS) and Access Zone Control (AZC), to WiFi core network for managing UE authentication and balancing the load of UEs between APs. Finally, we demonstrate and validate the effectiveness of our proposed idea over other prior approaches based on comparison with a current handover and Extensible Authentication Protocol-Authentication and Key Agreement (EAP-AKA) mechanisms in the literature through simulations

    Handover management for hybrid satellite/terrestrial networks

    Get PDF
    9 pagesInternational audienceInitially envisaged to support handover between different wireless 802.x network technologies, the IEEE 802.21 standard also appears as the good candidate for handover management in future integrated satellite / terrestrial systems. This paper presents an analysis of how this standard could be implemented in the frame of a realistic scenario and taking into account the current trends in wireless network and mobility architectures. Our solution is then evaluated by means of emulation over a DVB-RCS representative testbed, and based on an experimental MIH implementation. We finally show that seamless handover can nearly be achieved with very short service outages

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Game-theoretic Scalable Offloading for Video Streaming Services over LTE and WiFi Networks

    Get PDF
    This paper presents a game-theoretic scalable offloading system that provides seamless video streaming services by effectively offloading parts of video traffic in all video streaming services to a WiFi network to alleviate cellular network congestion. The system also consolidates multiple physical paths in a cost-effective manner. In the proposed system, the fountain encoding symbols of compressed video data are transmitted through long term evolution (LTE) and WiFi networks concurrently to flexibly control the amount of video traffic through the WiFi network as well as mitigate video quality degradation caused by wireless channel errors. Furthermore, the progressive second price auction mechanism is employed to allocate the limited LTE resources to multiple user equipment in order to maximize social welfare while converging to the epsilon-Nash equilibrium. Specifically, we design an application-centric resource valuation that explicitly considers both the realistic wireless network conditions and characteristics of video streaming services. In addition, the scalability and convergence properties of the proposed system are verified both theoretically and experimentally. The proposed system is implemented using network simulator 3. Simulation results are provided to demonstrate the performance improvement of the proposed system.111Nsciescopu
    • 

    corecore