74,025 research outputs found

    Density ridge manifold traversal

    Get PDF
    The density ridge framework for estimating principal curves and surfaces has in a number of recent works been shown to capture manifold structure in data in an intuitive and effective manner. However, to date there exists no efficient way to traverse these manifolds as defined by density ridges. This is unfortunate, as manifold traversal is an important problem for example for shape estimation in medical imaging, or in general for being able to characterize and understand state transitions or local variability over the data manifold. In this paper, we remedy this situation by introducing a novel manifold traversal algorithm based on geodesics within the density ridge approach. The traversal is executed in a subspace capturing the intrinsic dimensionality of the data using dimensionality reduction techniques such as principal component analysis or kernel entropy component analysis. A mapping back to the ambient space is obtained by training a neural network. We compare against maximum mean discrepancy traversal, a recent approach, and obtain promising results

    Assessing transformer oil quality using deep convolutional networks

    Get PDF
    Electrical power grids comprise a significantly large number of transformers that interconnect power generation, transmission and distribution. These transformers having different MVA ratings are critical assets that require proper maintenance to provide long and uninterrupted electrical service. The mineral oil, an essential component of any transformer, not only provides cooling but also acts as an insulating medium within the transformer. The quality and the key dissolved properties of insulating mineral oil for the transformer are critical with its proper and reliable operation. However, traditional chemical diagnostic methods are expensive and time-consuming. A transformer oil image analysis approach, based on the entropy value of oil, which is inexpensive, effective and quick. However, the inability of entropy to estimate the vital transformer oil properties such as equivalent age, Neutralization Number (NN), dissipation factor (tanδ) and power factor (PF); and many intuitively derived constants usage limit its estimation accuracy. To address this issue, in this paper, we introduce an innovative transformer oil analysis using two deep convolutional learning techniques such as Convolutional Neural Network (ConvNet) and Residual Neural Network (ResNet). These two deep neural networks are chosen for this project as they have superior performance in computer vision. After estimating the equivalent aging year of transformer oil from its image by our proposed method, NN, tanδ and PF are computed using that estimated age. Our deep learning based techniques can accurately predict the transformer oil equivalent age, leading to calculate NN, tanδ and PF more accurately. The root means square error of estimated equivalent age produced by entropy, ConvNet and ResNet based methods are 0.718, 0.122 and 0.065, respectively. ConvNet and ResNet based methods have reduced the error of the oil age estimation by 83% and 91%, respectively compared to that of the entropy method. Our proposed oil image analysis can calculate the equivalent age that is very close to the actual age for all images used in the experiment. © 2019 IEEE.E

    MISEP - Linear and Nonlinear ICA Based on Mutual Information

    Get PDF
    MISEP is a method for linear and nonlinear ICA, that is able to handle a large variety of situations. It is an extension of the well known INFOMAX method, in two directions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities to be used at the outputs. The method can therefore separate linear and nonlinear mixtures of components with a wide range of statistical distributions. This paper presents the basis of the MISEP method, as well as experimental results obtained with it. The results illustrate the applicability of the method to various situations, and show that, although the nonlinear blind separation problem is ill-posed, use of regularization allows the problem to be solved when the nonlinear mixture is relatively smooth
    corecore