8,543 research outputs found

    ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic

    Get PDF
    It is well known that apps running on mobile devices extensively track and leak users' personally identifiable information (PII); however, these users have little visibility into PII leaked through the network traffic generated by their devices, and have poor control over how, when and where that traffic is sent and handled by third parties. In this paper, we present the design, implementation, and evaluation of ReCon: a cross-platform system that reveals PII leaks and gives users control over them without requiring any special privileges or custom OSes. ReCon leverages machine learning to reveal potential PII leaks by inspecting network traffic, and provides a visualization tool to empower users with the ability to control these leaks via blocking or substitution of PII. We evaluate ReCon's effectiveness with measurements from controlled experiments using leaks from the 100 most popular iOS, Android, and Windows Phone apps, and via an IRB-approved user study with 92 participants. We show that ReCon is accurate, efficient, and identifies a wider range of PII than previous approaches.Comment: Please use MobiSys version when referencing this work: http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob

    Quality assessment and usage behavior of a mobile voice-over-IP service

    Get PDF
    Voice-over-IP (VoIP) services offer users a cheap alternative to the traditional mobile operators to make voice calls. Due to the increased capabilities and connectivity of mobile devices, these VoIP services are becoming increasingly popular on the mobile platform. Understanding the user's usage behavior and quality assessment of the VoIP service plays a key role in optimizing the Quality of Experience (QoE) and making the service to succeed or to fail. By analyzing the usage and quality assessments of a commercial VoIP service, this paper identifies device characteristics, context parameters, and user aspects that influence the usage behavior and experience during VoIP calls. Whereas multimedia services are traditionally evaluated by monitoring usage and quality for a limited number of test subjects and during a limited evaluation period, this study analyzes the service usage and quality assessments of more than thousand users over a period of 120 days. This allows to analyze evolutions in the usage behavior and perceived quality over time, which has not been done up to now for a widely-used, mobile, multimedia service. The results show a significant evolution over time of the number of calls, the call duration, and the quality assessment. The time of the call, the used network, and handovers during the call showed to have a significant influence on the users' quality assessments

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page

    MobileAppScrutinator: A Simple yet Efficient Dynamic Analysis Approach for Detecting Privacy Leaks across Mobile OSs

    Get PDF
    Smartphones, the devices we carry everywhere with us, are being heavily tracked and have undoubtedly become a major threat to our privacy. As "tracking the trackers" has become a necessity, various static and dynamic analysis tools have been developed in the past. However, today, we still lack suitable tools to detect, measure and compare the ongoing tracking across mobile OSs. To this end, we propose MobileAppScrutinator, based on a simple yet efficient dynamic analysis approach, that works on both Android and iOS (the two most popular OSs today). To demonstrate the current trend in tracking, we select 140 most representative Apps available on both Android and iOS AppStores and test them with MobileAppScrutinator. In fact, choosing the same set of apps on both Android and iOS also enables us to compare the ongoing tracking on these two OSs. Finally, we also discuss the effectiveness of privacy safeguards available on Android and iOS. We show that neither Android nor iOS privacy safeguards in their present state are completely satisfying

    Self-Learning Classifier for Internet traffic

    Get PDF
    Network visibility is a critical part of traffic engineering, network management, and security. Recently, unsupervised algorithms have been envisioned as a viable alternative to automatically identify classes of traffic. However, the accuracy achieved so far does not allow to use them for traffic classification in practical scenario. In this paper, we propose SeLeCT, a Self-Learning Classifier for Internet traffic. It uses unsupervised algorithms along with an adaptive learning approach to automatically let classes of traffic emerge, being identified and (easily) labeled. SeLeCT automatically groups flows into pure (or homogeneous) clusters using alternating simple clustering and filtering phases to remove outliers. SeLeCT uses an adaptive learning approach to boost its ability to spot new protocols and applications. Finally, SeLeCT also simplifies label assignment (which is still based on some manual intervention) so that proper class labels can be easily discovered. We evaluate the performance of SeLeCT using traffic traces collected in different years from various ISPs located in 3 different continents. Our experiments show that SeLeCT achieves overall accuracy close to 98%. Unlike state-of-art classifiers, the biggest advantage of SeLeCT is its ability to help discovering new protocols and applications in an almost automated fashio
    corecore