1,464,988 research outputs found

    Spectral analysis of deformed random networks

    Full text link
    We study spectral behavior of sparsely connected random networks under the random matrix framework. Sub-networks without any connection among them form a network having perfect community structure. As connections among the sub-networks are introduced, the spacing distribution shows a transition from the Poisson statistics to the Gaussian orthogonal ensemble statistics of random matrix theory. The eigenvalue density distribution shows a transition to the Wigner's semicircular behavior for a completely deformed network. The range for which spectral rigidity, measured by the Dyson-Mehta Δ3\Delta_3 statistics, follows the Gaussian orthogonal ensemble statistics depends upon the deformation of the network from the perfect community structure. The spacing distribution is particularly useful to track very slight deformations of the network from a perfect community structure, whereas the density distribution and the Δ3\Delta_3 statistics remain identical to the undeformed network. On the other hand the Δ3\Delta_3 statistics is useful for the larger deformation strengths. Finally, we analyze the spectrum of a protein-protein interaction network for Helicobacter, and compare the spectral behavior with those of the model networks.Comment: accepted for publication in Phys. Rev. E (replaced with the final version

    Dynamic Computation of Network Statistics via Updating Schema

    Full text link
    In this paper we derive an updating scheme for calculating some important network statistics such as degree, clustering coefficient, etc., aiming at reduce the amount of computation needed to track the evolving behavior of large networks; and more importantly, to provide efficient methods for potential use of modeling the evolution of networks. Using the updating scheme, the network statistics can be computed and updated easily and much faster than re-calculating each time for large evolving networks. The update formula can also be used to determine which edge/node will lead to the extremal change of network statistics, providing a way of predicting or designing evolution rule of networks.Comment: 17 pages, 6 figure

    Failed "nonaccelerating" models of prokaryote gene regulatory networks

    Full text link
    Much current network analysis is predicated on the assumption that important biological networks will either possess scale free or exponential statistics which are independent of network size allowing unconstrained network growth over time. In this paper, we demonstrate that such network growth models are unable to explain recent comparative genomics results on the growth of prokaryote regulatory gene networks as a function of gene number. This failure largely results as prokaryote regulatory gene networks are "accelerating" and have total link numbers growing faster than linearly with network size and so can exhibit transitions from stationary to nonstationary statistics and from random to scale-free to regular statistics at particular critical network sizes. In the limit, these networks can undergo transitions so marked as to constrain network sizes to be below some critical value. This is of interest as the regulatory gene networks of single celled prokaryotes are indeed characterized by an accelerating quadratic growth with gene count and are size constrained to be less than about 10,000 genes encoded in DNA sequence of less than about 10 megabases. We develop two "nonaccelerating" network models of prokaryote regulatory gene networks in an endeavor to match observation and demonstrate that these approaches fail to reproduce observed statistics.Comment: Corrected error in biological input parameter: 13 pages, 9 figure
    corecore