188 research outputs found

    End-to-end network slicing architecture and implementation for 5G micro-operator leveraging multi-domain and multi-tenancy

    Get PDF
    Abstract. Local 5G network are emerging as new form of 5G deployment targeted are service delivery for vertical specific purposes and other local users. As such, a well-defined network slicing architecture and implementation procedure is required for a local 5G network. A local 5G network also known as a 5G micro-operator network is targeted a network delivery for vertical-specific services. The aim of the micro-operator concept is to provide enough network flexibility and customization required by different vertical. Previous works on the micro-operator network have established different deployment scenarios that can exist, namely Closed, Open and Mixed Network. Thus, in order for any deployment of a micro-operator network to achieve the network flexibility, customization and privacy required by various vertical, it is essential to have a well-defined network slicing architecture and implementation procedure for local 5G networks. In this thesis, a sophisticated end-to-end network slicing architecture is proposed for different deployment scenarios of a local 5G micro-operator. The aim of the architecture is to address the unavailable description of network slicing for vertical specific network providers, leveraging multi-domain and multi tenancy. The proposed architecture incorporates a broad four-layer concept, leveraging a Multi-tenancy layer for different tenants and their end users, a descriptive Service layer, a multi-domain Slicing MANO layer and a Resource layer. A message sequence diagram is established based on the proposed architecture to describe the flow of information from when a tenant request a slice till the network slices are allocated as communication services to the various targeted user equipment. An actual implementation of network slicing is developed for specific layers of the proposed architecture. To do this, we used a softwarized network based on SDN/NFV, using OpenStack as a cloud infrastructure. On top of that, the network slicing implementation was done using the ETSI Open Source MANO. With these tools, different deployment scenarios’ implementations are achieved. Performance analysis are made based on metrics such as CPU utilization, memory utilization, rate of packet sent and packet received between different network service. These metrics are used to compare shared and non-shared slices within a single or multiple domain slice implementation, which were used as basis for classification of network slice instantiation in 5G micro-operator deployment scenarios. The results from the thesis successfully support the end-to-end network slicing architecture for various deployment scenarios of a local 5G micro-operator network, proposes a slice formation sequence from the end users to the micro-operator network for each deployment scenarios, implement different part of the architecture using different open source tools and measure the performance metrics of different deployment scenarios based on CPU or memory utilization

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing

    NeutRAN: An Open RAN Neutral Host Architecture for Zero-Touch RAN and Spectrum Sharing

    Full text link
    Obtaining access to exclusive spectrum, cell sites, Radio Access Network (RAN) equipment, and edge infrastructure imposes major capital expenses to mobile network operators. A neutral host infrastructure, by which a third-party company provides RAN services to mobile operators through network virtualization and slicing techniques, is seen as a promising solution to decrease these costs. Currently, however, neutral host providers lack automated and virtualized pipelines for onboarding new tenants and to provide elastic and on-demand allocation of resources matching operators' requirements. To address this gap, this paper presents NeutRAN, a zero-touch framework based on the O-RAN architecture to support applications on neutral hosts and automatic operator onboarding. NeutRAN builds upon two key components: (i) an optimization engine to guarantee coverage and to meet quality of service requirements while accounting for the limited amount of shared spectrum and RAN nodes, and (ii) a fully virtualized and automated infrastructure that converts the output of the optimization engine into deployable micro-services to be executed at RAN nodes and cell sites. NeutRAN was prototyped on an OpenShift cluster and on a programmable testbed with 4 base stations and 10 users from 3 different tenants. We evaluate its benefits, comparing it to a traditional license-based RAN where each tenant has dedicated physical and spectrum resources. We show that NeutRAN can deploy a fully operational neutral host-based cellular network in around 10 seconds. Experimental results show that it increases the cumulative network throughput by 2.18x and the per-user average throughput by 1.73x in networks with shared spectrum blocks of 30 MHz. NeutRAN provides a 1.77x cumulative throughput gain even when it can only operate on a shared spectrum block of 10 MHz (one third of the spectrum used in license-based RANs).Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Mobile Computing, August 202

    Micro and macro network slicing: an experimental assessment of the impact of increasing numbers of slices

    Get PDF
    The fifth generation (5G) telecommunications network aims not only to enhance traffic performance and allow efficient management, but also to enable it to dynamically and flexibly adapt to the traffic demands of different vertical scenarios. In order to support that enablement, the underlying network procedures (i.e., network functions) are being virtualized and deployed in cloud-based environments, allowing for a more optimized usage of the infra-structure resources. In addition, such resources can be sliced, allowing isolated provisioning to specific network functions allocated to disparate vertical deployments. As network slices are envisaged by network operators to fulfill a small number of slices, able to cater towards essential 5G scenario demands (i.e., enhanced mobile broadband, massive machine-type communications and ultra reliable low-latency communications), the total amount of slices existing in a system is currently dictated by the underlying operational overhead placed over the cloud infra-structure. This paper explores the challenges associated to a vision where the network slicing concept is applied with a much greater level of granularity, ultimately allowing it to become a core mechanism of the network’s operation, with large numbers of co-existing slices. In that respect, this paper proposes an architecture framework for instantiation of network slices among network providers, which in turn are able to instantiate sub-slices tailored to use cases and vertical tenants. The evaluation of this concept is done following a two-pronged approach: firstly, different slice dimensions (i.e., from micro to macro) are proposed and discussed, pointing out the benefits and challenges of each proposed slice; secondly, we deployed a mobile network provider (MNO), using OpenAirInterface and FlexRAN frameworks, and experimentally evaluated the its slicing mechanisms. The objective is to provide insight on the challenges and impact associated with the deployment of an increasing amount of slices, using the same available infra-structural resources.publishe

    Network Slicing

    Get PDF
    Network slicing is emerging as a key enabling technology to support new service needs, business cases, and the evolution of programmable networking. As an end-to-end concept involving network functions in different domains and administrations, network slicing calls for new standardization efforts, design methodologies, and deployment strategies. This chapter aims at addressing the main aspects of network slicing with relevant challenges and practical solutions

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    Evolution of Orchestration Towards 5G

    Get PDF
    Service orchestration is an essential activity in 5G networks. It performs optimal resource allocation and provisions services in an effective sequence based on demands across a collection of physical or virtual network functions (P/VNF). This paper summarizes several orchestration environments and components along with their evolution towards 5G. A brief operational comparison of platforms such as Open Source Management and Orchestration (OSM MANO), Open Platform for NFV (OPNFV) and Open Network Automation Platform (ONAP) have been presented, along with different deployment models and architectural alternatives
    • …
    corecore