2,002 research outputs found

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    VANET Connectivity Analysis

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc networks that raise a number of technical challenges, notably from the point of view of their mobility models. In this paper, we provide a thorough analysis of the connectivity of such networks by leveraging on well-known results of percolation theory. By means of simulations, we study the influence of a number of parameters, including vehicle density, proportion of equipped vehicles, and radio communication range. We also study the influence of traffic lights and roadside units. Our results provide insights on the behavior of connectivity. We believe this paper to be a valuable framework to assess the feasibility and performance of future applications relying on vehicular connectivity in urban scenarios

    Vehicular Fog Computing Enabled Real-time Collision Warning via Trajectory Calibration

    Full text link
    Vehicular fog computing (VFC) has been envisioned as a promising paradigm for enabling a variety of emerging intelligent transportation systems (ITS). However, due to inevitable as well as non-negligible issues in wireless communication, including transmission latency and packet loss, it is still challenging in implementing safety-critical applications, such as real-time collision warning in vehicular networks. In this paper, we present a vehicular fog computing architecture, aiming at supporting effective and real-time collision warning by offloading computation and communication overheads to distributed fog nodes. With the system architecture, we further propose a trajectory calibration based collision warning (TCCW) algorithm along with tailored communication protocols. Specifically, an application-layer vehicular-to-infrastructure (V2I) communication delay is fitted by the Stable distribution with real-world field testing data. Then, a packet loss detection mechanism is designed. Finally, TCCW calibrates real-time vehicle trajectories based on received vehicle status including GPS coordinates, velocity, acceleration, heading direction, as well as the estimation of communication delay and the detection of packet loss. For performance evaluation, we build the simulation model and implement conventional solutions including cloud-based warning and fog-based warning without calibration for comparison. Real-vehicle trajectories are extracted as the input, and the simulation results demonstrate that the effectiveness of TCCW in terms of the highest precision and recall in a wide range of scenarios

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios
    corecore