17,666 research outputs found

    Comparison of Classifiers for Radar Emitter Type Identification

    Full text link
    ARTMAP neural network classifiers are considered for the identification of radar emitter types from their waveform parameters. These classifiers can represent radar emitter type classes with one or more prototypes, perform on-line incremental learning to account for novelty encountered in the field, and process radar pulse streams at high speed, making them attractive for real-time applications such as electronic support measures (ESM). The performance of four ARTMAP variants- ARTMAP (Stage 1), ARTMAP-IC, fuzzy ARTMAP and Gaussian ARTMAP - is assessed with radar data gathered in the field. The k nearest neighbor (kNN) and radial basis function (RDF) classifiers are used for reference. Simulation results indicate that fuzzy ARTMAP and Gaussian ARTMAP achieve an average classification rate consistently higher than that of the other ARTMAP classifers and comparable to that of kNN and RBF. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP require fewer training epochs than Gaussian ARTMAP and RBF, and substantially fewer prototype vectors (thus, smaller physical memory requirements and faster fielded performance) than Gaussian ARTMAP, RBF and kNN. Overall, fuzzy ART MAP performs at least as well as the other classifiers in both accuracy and computational complexity, and better than each of them in at least one of these aspects of performance. Incorporation into fuzzy ARTMAP of the MT- feature of ARTMAP-IC is found to be essential for convergence during on-line training with this data set.Defense Advanced Research Projects Agency and the Office of Naval Research (N000I4-95-1-409 (S.G. and M.A.R.); National Science Foundation (IRI-97-20333) (S.G.); Natural Science and Engineering Research Council of Canada (E.G.); Office of Naval Research (N00014-95-1-0657

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore