31,702 research outputs found

    Reputation-based network selection solution in heterogeneous wireless network environments

    Get PDF
    The significant developments in terms of both mobile computing device (e.g., smartphones, tablets, laptops, etc.) and the wireless communication technologies (e.g., LTE, LTE-Advanced, WiMAX, etc.), lead towards a converged heterogeneous wireless environment. In this context, the user will be facing the problem of selecting from a number of Radio Access Networks that differ in technology, coverage, pricing scheme, bandwidth, latency, etc. In order to provide high quality of service (QoS) to the user in this heterogeneous wireless environment, a network selection solution is required that will efficiently facilitate the vertical handover between different wireless access networks in a seamless manner. In this paper, we propose a reputation-based network selection solution which aims to select the best value network for the user. We propose a network profiling algorithm that used to compute the reputation of each of the available networks based on the joint collaboration of the users within the network. The network with the best reputation value is recommended for selection and handover

    Network Selection for Mobile Nodes in Heterogeneous Wireless Networks using Knapsack Problem Dynamic Algorithms

    Get PDF
    With the accelerated proliferation wireless networks ranging from GPRS and EDGE to high speed networks such as HSPDA and Mobile Wi-Fi, network selection by mobile nodes will benefit more from knowledge of Network Capability of candidate networks. Network selection is important for handover in heterogeneous wireless environment. User Profiles/Needs and Network Capability will greatly influence the next logical step after network discovery, which is Network Selection. We examine the Dynamic Network Selection paradigm that uses User Profiling/needs to rank networks for selection and ignore networks with less capacity than required, using the Knapsack problem 0/1 Dynamic algorithm and the Knapsack problem Optimization Algorithm

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    From cellular decision making to adaptive handoff in heterogeneous wireless networks

    Get PDF
    Handoff decision making is critical for mobile users to reap potential benefits from heterogeneous wireless networks. This letter proposes a biologically inspired handoff decisionmaking method by mimicking the dynamics which govern the adaptive behavior of an Escherichia coli cell in a time-varying environment.With the goal of guaranteeing the Quality of Service (QoS), we formulate a utility function that covers the demands of a user’s diverse applications and the time-varying network conditions. With this utility function, we map the dynamic heterogeneous environment to a cellular decision-making space, such that the user is induced by a cellular attractor selection mechanism to make distributed and robust handoff decisions. Furthermore, we also present a multi-attribute decision-making network selection algorithm for any user to determine an access network, which is integrated with the proposed bio-inspired decision-making mechanism. Simulation results are supplemented to show that the proposed method can achieve better QoS and fairness when it is compared with conventional methods

    AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs

    Full text link
    The nodes in wireless sensor networks (WSNs) contain limited energy resources, which are needed to transmit data to base station (BS). Routing protocols are designed to reduce the energy consumption. Clustering algorithms are best in this aspect. Such clustering algorithms increase the stability and lifetime of the network. However, every routing protocol is not suitable for heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy efficient protocol for wireless sensor networks. AM-DisCNT uses circular deployment for even consumption of energy in entire wireless sensor network. Cluster-head selection is on the basis of energy. Highest energy node becomes CH for that round. Energy is again compared in the next round to check the highest energy node of that round. The simulation results show that AM-DisCNT performs better than the existing heterogeneous protocols on the basis of network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing
    • …
    corecore