18,470 research outputs found

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Dynamic Multi-Arm Bandit Game Based Multi-Agents Spectrum Sharing Strategy Design

    Full text link
    For a wireless avionics communication system, a Multi-arm bandit game is mathematically formulated, which includes channel states, strategies, and rewards. The simple case includes only two agents sharing the spectrum which is fully studied in terms of maximizing the cumulative reward over a finite time horizon. An Upper Confidence Bound (UCB) algorithm is used to achieve the optimal solutions for the stochastic Multi-Arm Bandit (MAB) problem. Also, the MAB problem can also be solved from the Markov game framework perspective. Meanwhile, Thompson Sampling (TS) is also used as benchmark to evaluate the proposed approach performance. Numerical results are also provided regarding minimizing the expectation of the regret and choosing the best parameter for the upper confidence bound

    Stochastic Model for Power Grid Dynamics

    Get PDF
    We introduce a stochastic model that describes the quasi-static dynamics of an electric transmission network under perturbations introduced by random load fluctuations, random removing of system components from service, random repair times for the failed components, and random response times to implement optimal system corrections for removing line overloads in a damaged or stressed transmission network. We use a linear approximation to the network flow equations and apply linear programming techniques that optimize the dispatching of generators and loads in order to eliminate the network overloads associated with a damaged system. We also provide a simple model for the operator's response to various contingency events that is not always optimal due to either failure of the state estimation system or due to the incorrect subjective assessment of the severity associated with these events. This further allows us to use a game theoretic framework for casting the optimization of the operator's response into the choice of the optimal strategy which minimizes the operating cost. We use a simple strategy space which is the degree of tolerance to line overloads and which is an automatic control (optimization) parameter that can be adjusted to trade off automatic load shed without propagating cascades versus reduced load shed and an increased risk of propagating cascades. The tolerance parameter is chosen to describes a smooth transition from a risk averse to a risk taken strategy...Comment: framework for a system-level analysis of the power grid from the viewpoint of complex network

    A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

    Full text link
    Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.Comment: In Proceedings GraMSec 2014, arXiv:1404.163
    corecore