1,219,058 research outputs found

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    3-D Object Recognition by the ART-EMAP Evidence Accumulation Network

    Full text link
    ART-EMAP synthesizes adaptive resonance theory (AHT) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). The network extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage I introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Simulations of the four ART-EMAP stages demonstrate performance on a difficult 3-D object recognition problem.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-1309); Air Force Office of Scientific Research (90-0083

    Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: a methodological proof-of-concept study

    Get PDF
    There are large health, societal, and economic costs associated with attrition from psychological services. The recently emerged, innovative statistical tool of complex network analysis was used in the present proof-of-concept study to improve the prediction of attrition. Fifty-eight patients undergoing psychological treatment for mood or anxiety disorders were assessed using Ecological Momentary Assessments four times a day for two weeks before treatment (3,248 measurements). Multilevel vector autoregressive models were employed to compute dynamic symptom networks. Intake variables and network parameters (centrality measures) were used as predictors for dropout using machine-learning algorithms. Networks for patients differed significantly between completers and dropouts. Among intake variables, initial impairment and sex predicted dropout explaining 6% of the variance. The network analysis identified four additional predictors: Expected force of being excited, outstrength of experiencing social support, betweenness of feeling nervous, and instrength of being active. The final model with the two intake and four network variables explained 32% of variance in dropout and identified 47 out of 58 patients correctly. The findings indicate that patients’ dynamic network structures may improve the prediction of dropout. When implemented in routine care, such prediction models could identify patients at risk for attrition and inform personalized treatment recommendations.This work was supported by the German Research Foundation National Institute (DFG, Grant nos. LU 660/8-1 and LU 660/10-1 to W. Lutz). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript. The corresponding author had access to all data in the study and had final responsibility for the decision to submit for publication. Dr. Hofmann receives financial support from the Alexander von Humboldt Foundation (as part of the Humboldt Prize), NIH/NCCIH (R01AT007257), NIH/NIMH (R01MH099021, U01MH108168), and the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative. (LU 660/8-1 - German Research Foundation National Institute (DFG); LU 660/10-1 - German Research Foundation National Institute (DFG); Alexander von Humboldt Foundation; R01AT007257 - NIH/NCCIH; R01MH099021 - NIH/NIMH; U01MH108168 - NIH/NIMH; James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition - Special Initiative)Accepted manuscrip

    e-Science Infrastructure for the Social Sciences

    Get PDF
    When the term „e-Science“ became popular, it frequently was referred to as “enhanced science” or “electronic science”. More telling is the definition ‘e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it’ (Taylor, 2001). The question arises to what extent can the social sciences profit from recent developments in e- Science infrastructure? While computing, storage and network capacities so far were sufficient to accommodate and access social science data bases, new capacities and technologies support new types of research, e.g. linking and analysing transactional or audio-visual data. Increasingly collaborative working by researchers in distributed networks is efficiently supported and new resources are available for e-learning. Whether these new developments become transformative or just helpful will very much depend on whether their full potential is recognized and creatively integrated into new research designs by theoretically innovative scientists. Progress in e-Science was very much linked to the vision of the Grid as “a software infrastructure that enables flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions and resources’ and virtually unlimited computing capacities (Foster et al. 2000). In the Social Sciences there has been considerable progress in using modern IT- technologies for multilingual access to virtual distributed research databases across Europe and beyond (e.g. NESSTAR, CESSDA – Portal), data portals for access to statistical offices and for linking access to data, literature, project, expert and other data bases (e.g. Digital Libraries, VASCODA/SOWIPORT). Whether future developments will need GRID enabling of social science databases or can be further developed using WEB 2.0 support is currently an open question. The challenges here are seamless integration and interoperability of data bases, a requirement that is also stipulated by internationalisation and trans-disciplinary research. This goes along with the need for standards and harmonisation of data and metadata. Progress powered by e- infrastructure is, among others, dependent on regulatory frameworks and human capital well trained in both, data science and research methods. It is also dependent on sufficient critical mass of the institutional infrastructure to efficiently support a dynamic research community that wants to “take the lead without catching up”.

    Dynamic Capability, Ambidexterity, Social Network--Empirical Evidence from SMEs in China

    Get PDF
    The investigation of organization’s ambidexterity is a challenge in management science research. While the existent literature shows a positive relation between dynamic capability and innovation, few empirical studies are focused to explain how dynamic capability influences the balanced and combined dimension of ambidexterity, and still less is understood about how social networks moderate this relation. By a relational model of dynamic capability, ambidexterity, and social network, this study has conducted multiple regression analysis on data collected from 350 SMEs in mainland China. The results show that, dynamic capability has positive influences on both the balanced and combined dimension of ambidexterity; and both the relational network and structural network play an inverted U moderating role, where the moderation of relational network is stronger than that of structural network. This study provides empirical support on dynamic capability’s influence on ambidexterity together with the moderation of social network
    • 

    corecore