37,748 research outputs found

    Social Scene Understanding: End-to-End Multi-Person Action Localization and Collective Activity Recognition

    Get PDF
    We present a unified framework for understanding human social behaviors in raw image sequences. Our model jointly detects multiple individuals, infers their social actions, and estimates the collective actions with a single feed-forward pass through a neural network. We propose a single architecture that does not rely on external detection algorithms but rather is trained end-to-end to generate dense proposal maps that are refined via a novel inference scheme. The temporal consistency is handled via a person-level matching Recurrent Neural Network. The complete model takes as input a sequence of frames and outputs detections along with the estimates of individual actions and collective activities. We demonstrate state-of-the-art performance of our algorithm on multiple publicly available benchmarks

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime

    A model for gene deregulation detection using expression data

    Get PDF
    In tumoral cells, gene regulation mechanisms are severely altered, and these modifications in the regulations may be characteristic of different subtypes of cancer. However, these alterations do not necessarily induce differential expressions between the subtypes. To answer this question, we propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set
    • …
    corecore