759 research outputs found

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Streaming Video Perfomance FDD Mode in Handover Process on LTE Network

    Get PDF
    LTE networks were created to improve on previous technologies, where the advantages of LTE networks are at the speed of data transfer and greater service capacity, reduced operational costs and can be integrated with existing technologies.This simulation is used to analyze the video performance of FDD streaming mode in handover process using Network Simulator 3 with 3 cell for different speed and number of users, with delay, packet loss and throughput parameters. The test results show that the performance of streaming video in handover process on all test, not affected by delay value. The highest delay value is still in good category that is 153. 43 ms. The highest packet loss is 54.5% with 60 users at speeds of 100 km / h. The highest throughput value is 0.60 Mbps at a speed of 40 km / h with 5 users and the lowest throughput value is 0.40 Mbps at a speed of 60 km / h with 60 users. The best performance occurred at a speed of 40 km / h, on the contrary at speeds of 70 Km / h and 100 Km / h, the performance decreased due to increased packet loss and decreased throughput value

    The quality of service of the deployed LTE technology by mobile network operators in Abuja-Nigeria

    Get PDF
    In this study, the real-world performance analysis of four Nigerian mobile network operators (MNOs), namely MTN, GLO, Airtel, and 9Mobile long-term evolution (LTE) cellular network, were analyzed and compared. The Nigerian MNOs utilize 5 MHz, 10 MH, and 20 MHz channel bandwidths based on third-generation partnership project’s (3 GPPs) recommendation. The presented analysis shows the uplink (UL), and downlink (DL) throughputs gaps in mobility condition as well as other LTE’s system quality of service (QoS) key performance indicators (KPI’s) of: Connection drop rate, connection failure rate, peak physical downlink throughput, minimum radio link control (RLC) downlink throughput threshold and latency are not strictly followed. The reason may be due to a lack of regulatory oversight enforcement. The comparative studies showed that MTN provides the best QoS. The introduction of novel LTE QoS metrics herein referred to as national independent wireless broadband quality reporting (NIWBQR) is the significant contribution of this study. The goal of this study is to show the quality of the network as it affects the user's experience. Important observation showed that all the MNOs are not adhering to the 3 GPPs specified user plane latency of 30 ms and control plane latency of 100 ms, respectively, which makes video streaming and low latency communication a near-impossible task

    Design And Analysis Of Modified-Proportional Fair Scheduler For LTELTE-Advanced

    Get PDF
    Nowadays, Long Term Evolution-Advanced (LTE-Advanced) is well known as a cellular network that can support very high data rates in diverse traffic conditions. One of the key components of Orthogonal Frequency-Division Multiple Access (OFDMA), Radio Resource Management (RRM), is critical in achieving the desired performance by managing key components of both PHY and MAC layers. The technique that can be done to achieve this is through packet scheduling which is the key scheme of RRM for LTE traffic processing whose function is to allocate resources for both frequency and time dimensions. Packet scheduling for LTE-Advanced has been a dynamic research area in recent years, because in evidence, the increasing demands of data services and number of users which is likely to explode the progress of the LTE system traffic. However, the existing scheduling system is increasingly congested with the increasing number of users and requires the new scheduling system to ensure a more efficient data transmission. In LTE system, Round Robin (RR) scheduler has a problem in providing a high data rate to User Equipment’s (UEs). This is because some resources will be wasted because it schedules the resources from/ to UEs while the UEs are suffering from severe deep fading and less than the required threshold. Meanwhile, for Proportional Fair (PF) scheduler, the process of maximizing scheme of data rate could be very unfair and UE that experienced a bad channel quality conditions can be starved. So, the mechanism applied in PF scheduler is to weight the current data rate achievable by a UE by the average rate received by a UE. The main contribution of this study is the design of a new scheduling scheme and its performance is compared with the PF and RR downlink schedulers for LTE by utilizing the LTE Downlink System Level Simulator. The proposed new scheduling algorithm, namely the Modified-PF scheduler, divides a single sub-frame into multiple time slots and allocates the resource block (RB) to the targeted UE in all time slots for each sub-frame based on the instantaneous Channel Quality Indicator (CQI) feedback received from UEs. Besides, the proposed scheduler is also capable to reallocate RB cyclically in turn to target UE within a time slot in order to ensure the process of distributing packet data consistently. The simulation results showed that the Modified-PF scheduler provided the best performance in terms of throughput in the range of up to 90% improvement and almost 40% increment for spectral efficiency with comparable fairness as compared to PF and RR schedulers. Although PF scheduler had the best fairness index, the Modified-PF scheduler provided a better compromise between the throughput in /spectral efficiency and fairness. This showed that the newly proposed scheme improved the LTE output performances while at the same time maintained a minimal required fairness among the UEs

    Integration of a cellular Internet-of-Things transceiver into 6G test network and evaluation of its performance

    Get PDF
    Abstract. This thesis focuses on the integration and deployment of an aftermarket cellular IoT transceiver on a 6G/5G test network for the purpose of evaluating the feasibility of such device for monitoring the network performance. The cellular technology employed was NB-IoT paired with a Raspberry Pi device as the microprocessor that collects network telemetry and uses MQTT protocol to provide constant data feed. The system was first tested in a public cellular network through a local service provider and was successfully connected to the network, establishing TCP/IP connections, and allowing internet connectivity. To monitor network information and gathering basic telemetry data, a network monitoring utility was developed. It collected data such as network identifiers, module registration status, band/channel, signal strength and GPS position. This data was then published to a MQTT broker. The Adafruit IO platform served as the MQTT broker, providing an interface to visualize the collected data. Furthermore, the system was configured for and deployed on a 6G/5G test network successfully. The device functionality that was developed and tested in the public network remained intact, enabling continuous monitoring and analysis of network data. Through this study, valuable insights into the integration and deployment of cellular IoT transceivers into cellular networks that employ the latest IoT technology were gained. The findings highlight the feasibility of utilizing such a system for network monitoring and demonstrate the potential for IoT applications in cellular networks
    • …
    corecore