229,702 research outputs found

    Fast, Accurate Second Order Methods for Network Optimization

    Full text link
    Dual descent methods are commonly used to solve network flow optimization problems, since their implementation can be distributed over the network. These algorithms, however, often exhibit slow convergence rates. Approximate Newton methods which compute descent directions locally have been proposed as alternatives to accelerate the convergence rates of conventional dual descent. The effectiveness of these methods, is limited by the accuracy of such approximations. In this paper, we propose an efficient and accurate distributed second order method for network flow problems. The proposed approach utilizes the sparsity pattern of the dual Hessian to approximate the the Newton direction using a novel distributed solver for symmetric diagonally dominant linear equations. Our solver is based on a distributed implementation of a recent parallel solver of Spielman and Peng (2014). We analyze the properties of the proposed algorithm and show that, similar to conventional Newton methods, superlinear convergence within a neighbor- hood of the optimal value is attained. We finally demonstrate the effectiveness of the approach in a set of experiments on randomly generated networks.Comment: arXiv admin note: text overlap with arXiv:1502.0315

    A Distributed Newton Method for Network Utility Maximization

    Full text link
    Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newton-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.Comment: 27 pages, 4 figures, LIDS report, submitted to CDC 201

    An efficient null space inexact Newton method for hydraulic simulation of water distribution networks

    Full text link
    Null space Newton algorithms are efficient in solving the nonlinear equations arising in hydraulic analysis of water distribution networks. In this article, we propose and evaluate an inexact Newton method that relies on partial updates of the network pipes' frictional headloss computations to solve the linear systems more efficiently and with numerical reliability. The update set parameters are studied to propose appropriate values. Different null space basis generation schemes are analysed to choose methods for sparse and well-conditioned null space bases resulting in a smaller update set. The Newton steps are computed in the null space by solving sparse, symmetric positive definite systems with sparse Cholesky factorizations. By using the constant structure of the null space system matrices, a single symbolic factorization in the Cholesky decomposition is used multiple times, reducing the computational cost of linear solves. The algorithms and analyses are validated using medium to large-scale water network models.Comment: 15 pages, 9 figures, Preprint extension of Abraham and Stoianov, 2015 (https://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001089), September 2015. Includes extended exposition, additional case studies and new simulations and analysi
    • …
    corecore