532,654 research outputs found

    Statistics of leaders and lead changes in growing networks

    Full text link
    We investigate various aspects of the statistics of leaders in growing network models defined by stochastic attachment rules. The leader is the node with highest degree at a given time (or the node which reached that degree first if there are co-leaders). This comprehensive study includes the full distribution of the degree of the leader, its identity, the number of co-leaders, as well as several observables characterizing the whole history of lead changes: number of lead changes, number of distinct leaders, lead persistence probability. We successively consider the following network models: uniform attachment, linear attachment (the Barabasi-Albert model), and generalized preferential attachment with initial attractiveness.Comment: 28 pages, 14 figures, 1 tabl

    The random subgraph model for the analysis of an ecclesiastical network in Merovingian Gaul

    Get PDF
    In the last two decades many random graph models have been proposed to extract knowledge from networks. Most of them look for communities or, more generally, clusters of vertices with homogeneous connection profiles. While the first models focused on networks with binary edges only, extensions now allow to deal with valued networks. Recently, new models were also introduced in order to characterize connection patterns in networks through mixed memberships. This work was motivated by the need of analyzing a historical network where a partition of the vertices is given and where edges are typed. A known partition is seen as a decomposition of a network into subgraphs that we propose to model using a stochastic model with unknown latent clusters. Each subgraph has its own mixing vector and sees its vertices associated to the clusters. The vertices then connect with a probability depending on the subgraphs only, while the types of edges are assumed to be sampled from the latent clusters. A variational Bayes expectation-maximization algorithm is proposed for inference as well as a model selection criterion for the estimation of the cluster number. Experiments are carried out on simulated data to assess the approach. The proposed methodology is then applied to an ecclesiastical network in Merovingian Gaul. An R code, called Rambo, implementing the inference algorithm is available from the authors upon request.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS691 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sample-path large deviations for tandem and priority queues with Gaussian inputs

    Get PDF
    This paper considers Gaussian flows multiplexed in a queueing network. A single node being a useful but often incomplete setting, we examine more advanced models. We focus on a (two-node) tandem queue, fed by a large number of Gaussian inputs. With service rates and buffer sizes at both nodes scaled appropriately, Schilder's sample-path large-deviations theorem can be applied to calculate the asymptotics of the overflow probability of the second queue. More specifically, we derive a lower bound on the exponential decay rate of this overflow probability and present an explicit condition for the lower bound to match the exact decay rate. Examples show that this condition holds for a broad range of frequently used Gaussian inputs. The last part of the paper concentrates on a model for a single node, equipped with a priority scheduling policy. We show that the analysis of the tandem queue directly carries over to this priority queueing system.Comment: Published at http://dx.doi.org/10.1214/105051605000000133 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamic importance sampling for queueing networks

    Full text link
    Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network setting (e.g., a two-node tandem network). Exploiting connections between importance sampling, differential games, and classical subsolutions of the corresponding Isaacs equation, we show how to design and analyze simple and efficient dynamic importance sampling schemes for general classes of networks. The models used to illustrate the approach include dd-node tandem Jackson networks and a two-node network with feedback, and the rare events studied are those of large queueing backlogs, including total population overflow and the overflow of individual buffers.Comment: Published in at http://dx.doi.org/10.1214/105051607000000122 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore