692 research outputs found

    Towards a Realistic Assessment of Multiple Antenna HCNs: Residual Additive Transceiver Hardware Impairments and Channel Aging

    Get PDF
    Given the critical dependence of broadcast channels by the accuracy of channel state information at the transmitter (CSIT), we develop a general downlink model with zero-forcing (ZF) precoding, applied in realistic heterogeneous cellular systems with multiple antenna base stations (BSs). Specifically, we take into consideration imperfect CSIT due to pilot contamination, channel aging due to users relative movement, and unavoidable residual additive transceiver hardware impairments (RATHIs). Assuming that the BSs are Poisson distributed, the main contributions focus on the derivations of the upper bound of the coverage probability and the achievable user rate for this general model. We show that both the coverage probability and the user rate are dependent on the imperfect CSIT and RATHIs. More concretely, we quantify the resultant performance loss of the network due to these effects. We depict that the uplink RATHIs have equal impact, but the downlink transmit BS distortion has a greater impact than the receive hardware impairment of the user. Thus, the transmit BS hardware should be of better quality than user's receive hardware. Furthermore, we characterise both the coverage probability and user rate in terms of the time variation of the channel. It is shown that both of them decrease with increasing user mobility, but after a specific value of the normalised Doppler shift, they increase again. Actually, the time variation, following the Jakes autocorrelation function, mirrors this effect on coverage probability and user rate. Finally, we consider space division multiple access (SDMA), single user beamforming (SU-BF), and baseline single-input single-output (SISO) transmission. A comparison among these schemes reveals that the coverage by means of SU-BF outperforms SDMA in terms of coverage.Comment: accepted in IEEE TV

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Nuts and Bolts of a Realistic Stochastic Geometric Analysis of mmWave HetNets: Hardware Impairments and Channel Aging

    Get PDF
    © 2019 IEEE.Motivated by heterogeneous network (HetNet) design in improving coverage and by millimeter-wave (mmWave) transmission offering an abundance of extra spectrum, we present a general analytical framework shedding light on the downlink of realistic mmWave HetNets consisting of K tiers of randomly located base stations. Specifically, we model, by virtue of stochastic geometry tools, the multi-Tier multi-user (MU) multiple-input multiple-output (MIMO) mmWave network degraded by the inevitable residual additive transceiver hardware impairments (RATHIs) and channel aging. Given this setting, we derive the coverage probability and the area spectral efficiency (ASE), and we subsequently evaluate the impact of residual transceiver hardware impairments and channel aging on these metrics. Different path-loss laws for line-of-sight and non-line-of-sight are accounted for the analysis, which are among the distinguishing features of mmWave systems. Among the findings, we show that the RATHIs have a meaningful impact at the high-signal-To-noise-ratio regime, while the transmit additive distortion degrades further than the receive distortion the system performance. Moreover, serving fewer users proves to be preferable, and the more directive the mmWaves are, the higher the ASE becomes.Peer reviewedFinal Accepted Versio

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Channel correlation-based approach for feedback overhead reduction in massive MIMO

    Get PDF
    For frequency-division duplex multiple-input-multiple-output (MIMO) systems, the channel state information at the transmitter is usually obtained by sending pilots or reference signals from all elements of the antenna array. The channel is then estimated by the receiver and communicated back to the transmitter. However, for massive MIMO, this periodical estimation of the full transfer matrix can lead to prohibitive overhead. To reduce the amount of data, we propose to estimate the updated channel matrix from the knowledge of the full correlation matrix at the transmitter made during some initialization time and the instantaneous measured channel matrix of smaller size, characterizing the link between the user and a limited number of reference array elements. The proposed algorithm is validated with measured massive MIMO channel transfer functions at 3.5GHz between a 9×99 \times 9 uniform rectangular array and different user positions. Since measurements were made in static conditions, the criteria chosen for evaluating the performance of the algorithm are based on a comparison of the predicted channel capacity calculated from either the measured or estimated channel matrix

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio
    • …
    corecore