224 research outputs found

    Energy-efficient design and implementation of turbo codes for wireless sensor network

    No full text
    The objective of this thesis is to apply near Shannon limit Error-Correcting Codes (ECCs), particularly the turbo-like codes, to energy-constrained wireless devices, for the purpose of extending their lifetime. Conventionally, sophisticated ECCs are applied to applications, such as mobile telephone networks or satellite television networks, to facilitate long range and high throughput wireless communication. For low power applications, such as Wireless Sensor Networks (WSNs), these ECCs were considered due to their high decoder complexities. In particular, the energy efficiency of the sensor nodes in WSNs is one of the most important factors in their design. The processing energy consumption required by high complexity ECCs decoders is a significant drawback, which impacts upon the overall energy consumption of the system. However, as Integrated Circuit (IC) processing technology is scaled down, the processing energy consumed by hardware resources reduces exponentially. As a result, near Shannon limit ECCs have recently begun to be considered for use in WSNs to reduce the transmission energy consumption [1,2]. However, to ensure that the transmission energy consumption reduction granted by the employed ECC makes a positive improvement on the overall energy efficiency of the system, the processing energy consumption must still be carefully considered.The main subject of this thesis is to optimise the design of turbo codes at both an algorithmic and a hardware implementation level for WSN scenarios. The communication requirements of the target WSN applications, such as communication distance, channel throughput, network scale, transmission frequency, network topology, etc, are investigated. Those requirements are important factors for designing a channel coding system. Especially when energy resources are limited, the trade-off between the requirements placed on different parameters must be carefully considered, in order to minimise the overall energy consumption. Moreover, based on this investigation, the advantages of employing near Shannon limit ECCs in WSNs are discussed. Low complexity and energy-efficient hardware implementations of the ECC decoders are essential for the target applications

    Multi-dimensional data stream compression for embedded systems

    Get PDF
    The rise of embedded systems and wireless technologies led to the emergence of the Internet of Things (IoT). Connected objects in IoT communicate with each other by transferring data streams over the network. For instance, in Wireless Sensor Networks (WSNs), sensor-equipped devices use sensors to capture properties, such as temperature or accelerometer, and send 1D or nD data streams to a host system. Power consumption is a critical problem for connected objects that have to work for a long time without being recharged, as it greatly affects their lifetime and usability. Data summarization is key for energy-constrained connected devices, as transmitting fewer data can reduce energy usage during transmission. Data compression, in particular, can compress the data stream while preserving information to a great extent. Many compression methods have been proposed in previous research. However, most of them are either not applicable to connected objects, due to resource limitation, or only handle one-dimensional streams while data acquired in connected objects are often multi-dimensional. Lightweight Temporal Compression (LTC) is among the lossy stream compression methods that provide the highest compression rate for the lowest CPU and memory consumption. In this thesis, we investigate the extension of LTC to multi-dimensional streams. First, we provide a formulation of the algorithm in an arbitrary vectorial space of dimension n. Then, we implement the algorithm for the infinity and Euclidean norms, in spaces of dimension 2D+t and 3D+t. We evaluate our implementation on 3D acceleration streams of human activities, on Neblina, a module integrating multiple sensors developed by our partner Motsai. Results show that the 3D implementation of LTC can save up to 20% in energy consumption for slow-paced activities, with a memory usage of about 100 B. Finally, we compare our method with polynomial regression compression methods in different dimensions. Our results show that our extension of LTC gives a higher compression ratio than the polynomial regression method, while using less memory and CPU

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Trust Score based Optimized Cluster Routing (TSOCR) approach for Enhancing the Lifetime of Wireless Sensor Networks

    Get PDF
    Energy efficiency is the most significant obstacle that Wireless Sensor Networks (WSN) must overcome, and the desire for solutions that maximize energy efficiency will never go away. There are a variety of methods that can be utilized to improve energy efficiency, with data transmission as the primary driver of maximum energy consumption. The transmission of data from the source to destination nodes uses more energy. When the transmission of data is handled better, the energy efficiency is improved and the lifetime of the network is increased. The purpose of this research is to propose an Trust Score based Optimized Cluster Routing (TSOCR)  scheme for WSNs, which is based on Whale Optimization Algorithm (WOA). A total trust score is derived by combining the results of computing three distinct trust scores, such as the direct, indirect, and the most recent trust score. The path that has the highest trust score is chosen as the route and employed for data transmission. The effectiveness of the work is evaluated by looking at factors such as the rate of packet delivery, the latency, the amount of energy consumed and the lifetime of the network

    An Energy-Efficient Skyline Query for Massively Multidimensional Sensing Data

    Get PDF
    Cyber physical systems (CPS) sense the environment based on wireless sensor networks. The sensing data of such systems present the characteristics of massiveness and multi-dimensionality. As one of the major monitoring methods used in in safe production monitoring and disaster early-warning applications, skyline query algorithms are extensively adopted for multiple-objective decision analysis of these sensing data. With the expansion of network sizes, the amount of sensing data increases sharply. Then, how to improve the query efficiency of skyline query algorithms and reduce the transmission energy consumption become pressing and difficult to accomplish issues. Therefore, this paper proposes a new energy-efficient skyline query method for massively multidimensional sensing data. First, the method uses a node cut strategy to dynamically generate filtering tuples with little computational overhead when collecting query results instead of issuing queries with filters. It can judge the domination relationship among different nodes, remove the detected data sets of dominated nodes that are irrelevant to the query, modify the query path dynamically, and reduce the data comparison and computational overhead. The efficient dynamic filter generated by this strategy uses little non-skyline data transmission in the network, and the transmission distance is very short. Second, our method also employs the tuple-cutting strategy inside the node and generates the local cutting tuples by the sub-tree with the node itself as the root node, which will be used to cut the detected data within the nodes of the sub-tree. Therefore, it can further control the non-skyline data uploading. A large number of experimental results show that our method can quickly return an overview of the monitored area and reduce the communication overhead. Additionally, it can shorten the response time and improve the efficiency of the query
    • …
    corecore