44,433 research outputs found

    Compute-and-forward on a line network with random access

    Get PDF
    Signal superposition and broadcast are important features of the wireless medium. Compute-and-Forward, also known as Physical Layer Network Coding (PLNC), is a technique exploiting these features in order to improve performance of wireless networks. More precisely, it allows wireless terminals to reliably de- code a linear combination of all messages, when a superposition of the messages is received through the physical medium.\ud In this paper, we propose a random PLNC scheme for a local interference line network in which nodes perform random access scheduling. We prove that our PLNC scheme is capacity achieving in the case of one symmetric bi-directional session with terminals on both ends of this line network model. We demonstrate that our scheme significantly outperforms any other scheme. In particular, by eligibly choosing the access rate of the random access scheduling mechanism for the network, the throughput of our PLNC scheme is at least 3.4 and 1.7 times better than traditional routing and plain network coding, respectively

    Effective Scheduling for Coded Distributed Storage in Wireless Sensor Networks

    Get PDF
    A distributed storage approach is proposed to access data reliably and to cope with node failures in wireless sensor networks. This approach is based on random linear network coding in combination with a scheduling algorithm based on backpressure. Upper bounds are provided on the maximum rate at which data can be reliably stored. Moreover, it is shown that the backpressure algorithm allows to operate the network in a decentralized fashion for any rate below this maximum

    Medium Access Control and Network Coding for Wireless Information Flows

    Get PDF
    This dissertation addresses the intertwined problems of medium access control (MAC) and network coding in ad hoc wireless networks. The emerging wireless network applications introduce new challenges that go beyond the classical understanding of wireline networks based on layered architecture and cooperation. Wireless networks involve strong interactions between MAC and network layers that need to be jointly specified in a cross-layer design framework with cooperative and non-cooperative users. For multi-hop wireless networks, we first rediscover the value of scheduled access at MAC layer through a detailed foray into the questions of throughput and energy consumption. We propose a distributed time-division mechanism to activate dynamic transmitter-receiver assignments and eliminate interference at non-intended receivers for throughput and energy-efficient resource allocation based on stable operation with arbitrary single-receiver MAC protocols. In addition to full cooperation, we consider competitive operation of selfish users with individual performance objectives of throughput, energy and delay. We follow a game-theoretic approach to evaluate the non-cooperative equilibrium strategies at MAC layer and discuss the coupling with physical layer through power and rate control. As a cross-layer extension to multi-hop operation, we analyze the non-cooperative operation of joint MAC and routing, and introduce cooperation stimulation mechanisms for packet forwarding. We also study the impact of malicious transmitters through a game formulation of denial of service attacks in random access and power-controlled MAC. As a new networking paradigm, network coding extends routing by allowing intermediate transmitters to code over the received packets. We introduce the adaptation of network coding to wireless environment in conjunction with MAC. We address new research problems that arise when network coding is cast in a cross-layer optimization framework with stable operation. We specify the maximum throughput and stability regions, and show the necessity of joint design of MAC and network coding for throughput and energy-efficient operation of cooperative or competitive users. Finally, we discuss the benefits of network coding for throughput stability in single-hop multicast communication over erasure channels. Deterministic and random coding schemes are introduced to optimize the stable throughput properties. The results extend our understanding of fundamental communication limits and trade-offs in wireless networks

    Massive Access for Future Wireless Communication Systems

    Full text link
    Multiple access technology played an important role in wireless communication in the last decades: it increases the capacity of the channel and allows different users to access the system simultaneously. However, the conventional multiple access technology, as originally designed for current human-centric wireless networks, is not scalable for future machine-centric wireless networks. Massive access (studied in the literature under such names as massive-device multiple access, unsourced massive random access, massive connectivity, massive machine-type communication, and many-access channels) exhibits a clean break with current networks by potentially supporting millions of devices in each cellular network. The tremendous growth in the number of connected devices requires a fundamental rethinking of the conventional multiple access technologies in favor of new schemes suited for massive random access. Among the many new challenges arising in this setting, the most relevant are: the fundamental limits of communication from a massive number of bursty devices transmitting simultaneously with short packets, the design of low complexity and energy-efficient massive access coding and communication schemes, efficient methods for the detection of a relatively small number of active users among a large number of potential user devices with sporadic transmission pattern, and the integration of massive access with massive MIMO and other important wireless communication technologies. This paper presents an overview of the concept of massive access wireless communication and of the contemporary research on this important topic.Comment: A short version has been accepted by IEEE Wireless Communication

    Distributed CSMA with pairwise coding

    Get PDF
    We consider distributed strategies for joint routing, scheduling, and network coding to maximize throughput in wireless networks. Network coding allows for an increase in network throughput under certain routing conditions. We previously developed a centralized control policy to jointly optimize for routing and scheduling combined with a simple network coding strategy using max-weight scheduling (MWS) [9]. In this work we focus on pairwise network coding and develop a distributed carrier sense multiple access (CSMA) policy that supports all arrival rates allowed by the network subject to the pairwise coding constraint. We extend our scheme to optimize for packet overhearing to increase the number of beneficial coding opportunities. Simulation results show that the CSMA strategy yields the same throughput as the optimal centralized policy of [9], but at the cost of increased delay. Moreover, overhearing provides up to an additional 25% increase in throughput on random topologies.United States. Dept. of Defense. Assistant Secretary of Defense for Research & EngineeringUnited States. Air Force (Air Force Contract FA8721-05-C-0002

    Network Coding For Star and Mesh Networks

    Get PDF
    This thesis introduces new network coding techniques to improve the file sharing and video streaming performance of wireless star and mesh networks. In this thesis we propose a new XOR based scheduling algorithm for network coding in cooperative local repair. The proposed algorithm commences in three phases. In the first phase, nodes exchange packets availability vectors. These vectors are functions of the probability of correct packet reception over the channel. This is followed by a short period of distributed scheduling where the nodes execute the processing algorithm which tries to minimize the total transmission time. In the third phase, nodes transmit the encoded packets as per the decision of the scheduling algorithm. Simulation results show improvement in system throughput and processing delay for the proposed algorithm. We also study the trade-offs between file sizes, processing delays, number of users and packet availability. In the sequel we display the favorable effects of file segmentation on the performance of the proposed scheduling algorithm. Furthermore, the upper bound on the performance and the analysis of the proposed scheduling algorithm are derived. Also, in this thesis, the effects of random network coding on code division multiple access/time division duplex (CDMA/TDD) platforms for wireless mesh networks are studied and evaluated. A multi-hop mesh network with single source and multiple receiving nodes is assumed. For reliable data transfer, a Selective Repeat ARQ protocol is used. Two scenarios are evaluated for their efficiency. In scenario 1, but not in scenario 2, random network coding is applied to CDMA/TDD wireless mesh networks. The delay and delay jitter for both scenarios are computed. The study also focuses on the effects of uncontrolled parameters such as the minimum number of neighbors and the network connectivity, and of controlled parameters such as Galois Field (GF) size, packet size, number of Walsh functions employed at each node and the Processing Gain. The analysis and simulation results show that applying random network coding to CDMA/TDD systems in wireless mesh networks could provide a noticeable improvement in overall efficiency. We also propose a cross layer approach for the Random Network coded-Code Division Multiple Access/Time Division Duplex (RNC-CDMA/TDD) wireless mesh networks. The proposed algorithm selects the number of assigned Walsh functions depending on the network topology. Two strategies of Walsh function assignments are proposed. In the first, nodes determine the number of their assigned Walsh functions depending on the neighbor with the maximum number of neighbors, which we call the worst case assignment. In the second, nodes determine the number of their assigned Walsh functions depending on the need for each transmission. Simulation results show the possible achievable improvement in the system performance, delay and delay jitter due to cross layer design

    Throughput Optimization in Multi-hop Wireless Networks with Random Access

    Get PDF
    This research investigates cross-layer design in multi-hop wireless networks with random access. Due to the complexity of the problem, we study cross-layer design with a simple slotted ALOHA medium access control (MAC) protocol without considering any network dynamics. Firstly, we study the optimal joint configuration of routing and MAC parameters in slotted ALOHA based wireless networks under a signal to interference plus noise ratio based physical interference model. We formulate a joint routing and MAC (JRM) optimization problem under a saturation assumption to determine the optimal max-min throughput of the flows and the optimal configuration of routing and MAC parameters. The JRM optimization problem is a complex non-convex problem. We solve it by an iterated optimal search (IOS) technique and validate our model via simulation. Via numerical and simulation results, we show that JRM design provides a significant throughput gain over a default configuration in a slotted ALOHA based wireless network. Next, we study the optimal joint configuration of routing, MAC, and network coding in wireless mesh networks using an XOR-like network coding without opportunistic listening. We reformulate the JRM optimization problem to include the simple network coding and obtain a more complex non-convex problem. Similar to the JRM problem, we solve it by the IOS technique and validate our model via simulation. Numerical and simulation results for different networks illustrate that (i) the jointly optimized configuration provides a remarkable throughput gain with respect to a default configuration in a slotted ALOHA system with network coding and (ii) the throughput gain obtained by the simple network coding is significant, especially at low transmission power, i.e., the gain obtained by jointly optimizing routing, MAC, and network coding is significant even when compared to an optimized network without network coding. We then show that, in a mesh network, a significant fraction of the throughput gain for network coding can be obtained by limiting network coding to nodes directly adjacent to the gateway. Next, we propose simple heuristics to configure slotted ALOHA based wireless networks without and with network coding. These heuristics are extensively evaluated via simulation and found to be very efficient. We also formulate problems to jointly configure not only the routing and MAC parameters but also the transmission rate parameters in multi-rate slotted ALOHA systems without and with network coding. We compare the performance of multi-rate and single rate systems via numerical results. We model the energy consumption in terms of slotted ALOHA system parameters. We found out that the energy consumption for various cross-layer systems, i.e., single rate and multi-rate slotted ALOHA systems without and with network coding, are very close
    corecore