651 research outputs found

    A distributed self-reconfiguration algorithm for cylindrical lattice-based modular robots

    Get PDF
    International audienceModular self-reconfigurable robots are composed of independent connected modules which can self-rearrange their connectivity using processing, communication and motion capabilities, in order to change the overall robot structure. In this paper, we consider rolling cylindrical modules arranged in a two-dimensional vertical hexagonal lattice. We propose a parallel, asynchronous and fully decentralized distributed algorithm to self-reconfigure robots from an initial configuration to a goal one. We evaluate our algorithm on the millimeter-scale cylindrical robots, developed in the Claytronics project, through simulation of large ensembles composed of up to ten thousand modules. We show the effectiveness of our algorithm and study its performance in terms of communications, movements and execution time. Our observations indicate that the number of communications, the number of movements and the execution time of our algorithm is highly predictable. Furthermore, we observe execution times that are linear in the size of the goal shape

    Radio Frequency communication for modular robots

    Get PDF
    Projecte realitzat mitjançant programa de mobilitat. University of Southern Denmark.Mærsk Mc-Kinney Møller InstituteWe explore the suitability of Wireless Radio Frequency (RF) inter-module communication for modular robots. Our hypothesis is that, instead of using Infrared (IR) and wired links, RF could be used for module localization and for local and global communication

    Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Full text link

    On the Transformation Capability of Feasible Mechanisms for Programmable Matter

    Get PDF
    In this work, we study theoretical models of \emph{programmable matter} systems. The systems under consideration consist of spherical modules, kept together by magnetic forces and able to perform two minimal mechanical operations (or movements): \emph{rotate} around a neighbor and \emph{slide} over a line. In terms of modeling, there are nn nodes arranged in a 2-dimensional grid and forming some initial \emph{shape}. The goal is for the initial shape AA to \emph{transform} to some target shape BB by a sequence of movements. Most of the paper focuses on \emph{transformability} questions, meaning whether it is in principle feasible to transform a given shape to another. We first consider the case in which only rotation is available to the nodes. Our main result is that deciding whether two given shapes AA and BB can be transformed to each other, is in P\mathbf{P}. We then insist on rotation only and impose the restriction that the nodes must maintain global connectivity throughout the transformation. We prove that the corresponding transformability question is in PSPACE\mathbf{PSPACE} and study the problem of determining the minimum \emph{seeds} that can make feasible, otherwise infeasible transformations. Next we allow both rotations and slidings and prove universality: any two connected shapes A,BA,B of the same order, can be transformed to each other without breaking connectivity. The worst-case number of movements of the generic strategy is Ω(n2)\Omega(n^2). We improve this to O(n)O(n) parallel time, by a pipelining strategy, and prove optimality of both by matching lower bounds. In the last part of the paper, we turn our attention to distributed transformations. The nodes are now distributed processes able to perform communicate-compute-move rounds. We provide distributed algorithms for a general type of transformations

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Analysis and implementation of distributed algorithms for multi-robot systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 159-166).Distributed algorithms for multi-robot systems rely on network communications to share information. However, the motion of the robots changes the network topology, which affects the information presented to the algorithm. For an algorithm to produce accurate output, robots need to communicate rapidly enough to keep the network topology correlated to their physical configuration. Infrequent communications will cause most multirobot distributed algorithms to produce less accurate results, and cause some algorithms to stop working altogether. The central theme of this work is that algorithm accuracy, communications bandwidth, and physical robot speed are related. This thesis has three main contributions: First, I develop a prototypical multi-robot application and computational model, propose a set of complexity metrics to evaluate distributed algorithm performance on multi-robot systems, and introduce the idea of the robot speed ratio, a dimensionless measure of robot speed relative to message speed in networks that rely on multi-hop communication. The robot speed ratio captures key relationships between communications bandwidth, mobility, and algorithm accuracy, and can be used at design time to trade off between them. I use this speed ratio to evaluate the performance of existing distributed algorithms for multi-hop communication and navigation. Second, I present a definition of boundaries in multi-robot systems, and develop new distributed algorithms to detect and characterize them. Finally, I define the problem of dynamic task assignment, and present four distributed algorithms that solve this problem, each representing a different trade-off between accuracy, running time, and communication resources. All the algorithms presented in this work are provably correct under ideal conditions and produce verifiable real-world performance.(cont.) They are self-stabilizing and robust to communications failures, population changes, and other errors. All the algorithms were tested on a swarm of 112 robots.by James Dwight McLurkin, IV.Ph.D

    Large scale MEMS robots cooperative map building based on realistic simulation of nano-wireless communications

    No full text
    International audienceThe Claytronics project has produced interesting hardware components like cylindric micro-robots called catoms and software models to enable the concept of programmable matter. One application is the use of several catoms linked together so that they can " walk ". These walkers can explore an area and thanks to electromagnetic wireless nano-networks, they can communicate with each other sharing the map of the place to explore. In this paper, we study the different parameters influencing the transmission quality of the map to a sink which uses both traditional wireless and wireless nano-communication networks

    On the Transformation Capability of Feasible Mechanisms for Programmable Matter

    Get PDF
    We study theoretical models of programmable matter systems, consisting of n spherical modules kept together by magnetic or electrostatic forces and able to perform two minimal mechanical operations (movements): rotate and/or slide. The goal is for an initial shape A to transform to some target shape B by a sequence of movements. Most of the paper focuses on transformability (feasibility) questions. When only rotation is available, we prove that deciding whether two given shapes can transform to each other, is in P. Under the additional restriction of maintaining global connectivity, we prove inclusion in PSPACE and explore minimum seeds that can make otherwise infeasible transformations feasible. Allowing both rotations and slidings yields universality: any two connected shapes of the same order can be transformed to each other without breaking connectivity, in O(n2) sequential and O(n) parallel time (both optimal). We finally provide a type of distributed transformation

    Complex Network Structure of Flocks in the Standard Vicsek Model

    Get PDF
    In flocking models, the collective motion of self-driven individuals leads to the formation of complex spatiotemporal patterns. The Standard Vicsek Model (SVM) considers individuals that tend to adopt the direction of movement of their neighbors under the influence of noise. By performing an extensive complex network characterization of the structure of SVM flocks, we show that flocks are highly clustered, assortative, and non-hierarchical networks with short-tailed degree distributions. Moreover, we also find that the SVM dynamics leads to the formation of complex structures with an effective dimension higher than that of the space where the actual displacements take place. Furthermore, we show that these structures are capable of sustaining mean-field-like orientationally ordered states when the displacements are suppressed, thus suggesting a linkage between the onset of order and the enhanced dimensionality of SVM flocks.Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgico
    • …
    corecore