411 research outputs found

    Integrating Blockchain and Fog Computing Technologies for Efficient Privacy-preserving Systems

    Get PDF
    This PhD dissertation concludes a three-year long research journey on the integration of Fog Computing and Blockchain technologies. The main aim of such integration is to address the challenges of each of these technologies, by integrating it with the other. Blockchain technology (BC) is a distributed ledger technology in the form of a distributed transactional database, secured by cryptography, and governed by a consensus mechanism. It was initially proposed for decentralized cryptocurrency applications with practically proven high robustness. Fog Computing (FC) is a geographically distributed computing architecture, in which various heterogeneous devices at the edge of network are ubiquitously connected to collaboratively provide elastic computation services. FC provides enhanced services closer to end-users in terms of time, energy, and network load. The integration of FC with BC can result in more efficient services, in terms of latency and privacy, mostly required by Internet of Things systems

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Synchronous and Concurrent Transmissions for Consensus in Low-Power Wireless

    Get PDF
    With the emergence of the Internet of Things, autonomous vehicles and the Industry 4.0, the need for dependable yet adaptive network protocols is arising. Many of these applications build their operations on distributed consensus. For example, UAVs agree on maneuvers to execute, and industrial systems agree on set-points for actuators.Moreover, such scenarios imply a dynamic network topology due to mobility and interference, for example. Many applications are mission- and safety-critical, too.Failures could cost lives or precipitate economic losses.In this thesis, we design, implement and evaluate network protocols as a step towards enabling a low-power, adaptive and dependable ubiquitous networking that enables consensus in the Internet of Things. We make four main contributions:- We introduce Orchestra that addresses the challenge of bringing TSCH (Time Slotted Channel Hopping) to dynamic networks as envisioned in the Internet of Things. In Orchestra, nodes autonomously compute their local schedules and update automatically as the topology evolves without signaling overhead. Besides, it does not require a central or distributed scheduler. Instead, it relies on the existing network stack information to maintain the schedules.- We present A2 : Agreement in the Air, a system that brings distributed consensus to low-power multihop networks. A2 introduces Synchrotron, a synchronous transmissions kernel that builds a robust mesh by exploiting the capture effect, frequency hopping with parallel channels, and link-layer security. A2 builds on top of this layer and enables the two- and three-phase commit protocols, and services such as group membership, hopping sequence distribution, and re-keying.- We present Wireless Paxos, a fault-tolerant, network-wide consensus primitive for low-power wireless networks. It is a new variant of Paxos, a widely used consensus protocol, and is specifically designed to tackle the challenges of low-power wireless networks. By utilizing concurrent transmissions, it provides a dependable low-latency consensus.- We present BlueFlood, a protocol that adapts concurrent transmissions to Bluetooth. The result is fast and efficient data dissemination in multihop Bluetooth networks. Moreover, BlueFlood floods can be reliably received by off-the-shelf Bluetooth devices such as smartphones, opening new applications of concurrent transmissions and seamless integration with existing technologies

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    A Learning-based Approach to Exploiting Sensing Diversity in Performance Critical Sensor Networks

    Get PDF
    Wireless sensor networks for human health monitoring, military surveillance, and disaster warning all have stringent accuracy requirements for detecting and classifying events while maximizing system lifetime. to meet high accuracy requirements and maximize system lifetime, we must address sensing diversity: sensing capability differences among both heterogeneous and homogeneous sensors in a specific deployment. Existing approaches either ignore sensing diversity entirely and assume all sensors have similar capabilities or attempt to overcome sensing diversity through calibration. Instead, we use machine learning to take advantage of sensing differences among heterogeneous sensors to provide high accuracy and energy savings for performance critical applications.;In this dissertation, we provide five major contributions that exploit the nuances of specific sensor deployments to increase application performance. First, we demonstrate that by using machine learning for event detection, we can explore the sensing capability of a specific deployment and use only the most capable sensors to meet user accuracy requirements. Second, we expand our diversity exploiting approach to detect multiple events using a distributed manner. Third, we address sensing diversity in body sensor networks, providing a practical, user friendly solution for activity recognition. Fourth, we further increase accuracy and energy savings in body sensor networks by sharing sensing resources among neighboring body sensor networks. Lastly, we provide a learning-based approach for forwarding event detection decisions to data sinks in an environment with mobile sensor nodes

    Decentralized data fusion and data harvesting framework for heterogeneous dynamic network systems

    Get PDF
    Diese Dissertation behandelt das Thema der dezentralisieren Sammlung und Fusion von Daten in heterogenen, ressourcenbeschraekten und dynamischen Netzwerkszenarien. Dazu wird ein generisches Framework vorgestellt, dass es erlaubt die Datensammlung, den Datenaustausch und auch die Datenfusion dynamisch zu konfigurieren. Im Zuge dessen wird auch eine Methode zur gerichteten Fusion von Daten auf graphentheoretischer Basis eingefrt, die es erlaubt eine logische Struktur fuer die Fusion von Informationen zu modellieren. Eine Markup-Sprache, die sowohl menschen- als auch maschinenlesbar ist, erlaubt es diese Struktur leicht zu editieren. Im Bereich der Protokolle zum Datenaustausch liegt der Fokus dieser Arbeit auf Energieeffizienz, um auch ressourcenbeschraenkte Geraete einzubinden. Ein weiterer Schwerpunkt liegt auf Robustheit fuer die betrachteten dynamischen Szenarien. Diese Dissertation schlaet zudem Design-Richtlinien vor, um verschiedene Ziele fuer unterschiedliche Applikationen umzusetzen. Diese lassen sich leicht in das vorgestellte Framework integrieren und darueber konfigurieren. Dadurch ergibt sich im Ganzen eine flexible Architektur, die sich leicht an dynamische Umgebungen anpassen laesst.With the increasing number of available smart phones, sensor nodes, and novel mobile smart devices such as Google glass, a large volume of data reflecting the environment is generated in the form of sensing data sources (such as GPS, received signal strength identification, accelerometer, microphone, images, videos and gyroscope, etc.). Some context-aware and data centric applications require the online processing of the data collected. The thesis researches on the decentralized data fusion and data harvesting framework for heterogeneous dynamic network system consisting of various devices with resource constraints. In order to achieve the flexible design, a general architecture is provided while the detailed data fusion and data exchange functions can be dynamically configured. A novel method to use directed fusion graph to model the logical structure of the distributed information fusion architecture is introduced. This directed fusion graph can accurately portray the interconnection among different data fusion components and the data exchange protocols, as well as the detailed data streams. The directed fusion graph is then transformed into a format with marked language, so that both human and machine can easily understand and edit. In the field of data exchange protocols, this thesis targets energy-efficiency considering the resource constraints of the devices and robustness, as the dynamic environment might cause failures to the system. It proposes a refined gossip strategy to reduce retransmission of redundant data. The thesis also suggests a design guideline to achieve different design aims for different applications. These results in this field can be integrated into the framework effortlessly. The configuration mechanism is another feature of this framework. Different from other research work which consider configuration as a post-design work separated from the main design of any middle-ware. This thesis considers the configuration part as another dimension of the framework. The whole strategy in configuration sets up the foundation for the flexible architecture, and makes it easy to adapt to the dynamic environment. The contributions in the above fields lead to a light-weight data fusion and data harvesting framework which can be deployed easily above wireless based, heterogeneous, dynamic network systems, even in extreme conditions, to handle data-centric applications
    • …
    corecore