277,580 research outputs found

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Mitigating Architectural Mismatch During the Evolutionary Synthesis of Deep Neural Networks

    Get PDF
    Evolutionary deep intelligence has recently shown great promise for producing small, powerful deep neural network models via the organic synthesis of increasingly efficient architectures over successive generations. Existing evolutionary synthesis processes, however, have allowed the mating of parent networks independent of architectural alignment, resulting in a mismatch of network structures. We present a preliminary study into the effects of architectural alignment during evolutionary synthesis using a gene tagging system. Surprisingly, the network architectures synthesized using the gene tagging approach resulted in slower decreases in performance accuracy and storage size; however, the resultant networks were comparable in size and performance accuracy to the non-gene tagging networks. Furthermore, we speculate that there is a noticeable decrease in network variability for networks synthesized with gene tagging, indicating that enforcing a like-with-like mating policy potentially restricts the exploration of the search space of possible network architectures.Comment: 5 page

    SuperNeurons: Dynamic GPU Memory Management for Training Deep Neural Networks

    Full text link
    Going deeper and wider in neural architectures improves the accuracy, while the limited GPU DRAM places an undesired restriction on the network design domain. Deep Learning (DL) practitioners either need change to less desired network architectures, or nontrivially dissect a network across multiGPUs. These distract DL practitioners from concentrating on their original machine learning tasks. We present SuperNeurons: a dynamic GPU memory scheduling runtime to enable the network training far beyond the GPU DRAM capacity. SuperNeurons features 3 memory optimizations, \textit{Liveness Analysis}, \textit{Unified Tensor Pool}, and \textit{Cost-Aware Recomputation}, all together they effectively reduce the network-wide peak memory usage down to the maximal memory usage among layers. We also address the performance issues in those memory saving techniques. Given the limited GPU DRAM, SuperNeurons not only provisions the necessary memory for the training, but also dynamically allocates the memory for convolution workspaces to achieve the high performance. Evaluations against Caffe, Torch, MXNet and TensorFlow have demonstrated that SuperNeurons trains at least 3.2432 deeper network than current ones with the leading performance. Particularly, SuperNeurons can train ResNet2500 that has 10410^4 basic network layers on a 12GB K40c.Comment: PPoPP '2018: 23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programmin

    Semantic Video CNNs through Representation Warping

    Full text link
    In this work, we propose a technique to convert CNN models for semantic segmentation of static images into CNNs for video data. We describe a warping method that can be used to augment existing architectures with very little extra computational cost. This module is called NetWarp and we demonstrate its use for a range of network architectures. The main design principle is to use optical flow of adjacent frames for warping internal network representations across time. A key insight of this work is that fast optical flow methods can be combined with many different CNN architectures for improved performance and end-to-end training. Experiments validate that the proposed approach incurs only little extra computational cost, while improving performance, when video streams are available. We achieve new state-of-the-art results on the CamVid and Cityscapes benchmark datasets and show consistent improvements over different baseline networks. Our code and models will be available at http://segmentation.is.tue.mpg.deComment: ICCV 201
    • 

    corecore