329 research outputs found

    Using Computer Vision And Volunteer Computing To Analyze Avian Nesting Patterns And Reduce Scientist Workload

    Get PDF
    This paper examines the use of feature detection and background subtraction algorithms to classify and detect events of interest within uncontrolled outdoor avian nesting video from the Wildlife@Home project. We tested feature detection using Speeded Up Robust Features (SURF) and a Support Vector Machine (SVM) along with four background subtraction algorithms — Mixture of Guassians (MOG), Running Gaussian Average (AccAvg), ViBe, and Pixel-Based Adaptive Segmentation (PBAS) — as methods to automatically detect and classify events from surveillance cameras. AccAvg and modified PBAS are shown to provide robust results and compensate for issues caused by cryptic coloration of the monitored species. Both methods utilize the Berkeley Open Infrastructure for Network Computing (BOINC) in order to provide the resources to be able to analyze the 68,000+ hours of video in the Wildlife@Home project in a reasonable amount of time. The feature detection technique failed to handle the many challenges found in the low quality uncontrolled outdoor video. The background subtraction work with AccAvg and the modified version of PBAS is shown to provide more accurate detection of events

    Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images

    Get PDF
    The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient’s cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies

    Inductive machine learning of optimal modular structures: Estimating solutions using support vector machines

    Get PDF
    Structural optimization is usually handled by iterative methods requiring repeated samples of a physics-based model, but this process can be computationally demanding. Given a set of previously optimized structures of the same topology, this paper uses inductive learning to replace this optimization process entirely by deriving a function that directly maps any given load to an optimal geometry. A support vector machine is trained to determine the optimal geometry of individual modules of a space frame structure given a specified load condition. Structures produced by learning are compared against those found by a standard gradient descent optimization, both as individual modules and then as a composite structure. The primary motivation for this is speed, and results show the process is highly efficient for cases in which similar optimizations must be performed repeatedly. The function learned by the algorithm can approximate the result of optimization very closely after sufficient training, and has also been found effective at generalizing the underlying optima to produce structures that perform better than those found by standard iterative methods

    Hybrid feature selection technique for intrusion detection system

    Get PDF
    High dimensionality’s problems have make feature selection as one of the most important criteria in determining the efficiency of intrusion detection systems. In this study we have selected a hybrid feature selection model that potentially combines the strengths of both the filter and the wrapper selection procedure. The potential hybrid solution is expected to effectively select the optimal set of features in detecting intrusion. The proposed hybrid model was carried out using correlation feature selection (CFS) together with three different search techniques known as best-first, greedy stepwise and genetic algorithm. The wrapper-based subset evaluation uses a random forest (RF) classifier to evaluate each of the features that were first selected by the filter method. The reduced feature selection on both KDD99 and DARPA 1999 dataset was tested using RF algorithm with ten-fold cross-validation in a supervised environment. The experimental result shows that the hybrid feature selections had produced satisfactory outcome

    Empowering One-vs-One Decomposition with Ensemble Learning for Multi-Class Imbalanced Data

    Get PDF
    Zhongliang Zhang was supported by the National Science Foundation of China (NSFC Proj. 61273204) and CSC Scholarship Program (CSC NO. 201406080059). Bartosz Krawczyk was supported by the Polish National Science Center under the grant no. UMO-2015/19/B/ST6/01597. Salvador Garcia and Francisco Herrera were partially supported by the Spanish Ministry of Education and Science under Project TIN2014-57251-P and the Andalusian Research Plan P10-TIC-6858, P11-TIC-7765. Alejandro Rosales-Perez was supported by the CONACyT grant 329013.Multi-class imbalance classification problems occur in many real-world applications, which suffer from the quite different distribution of classes. Decomposition strategies are well-known techniques to address the classification problems involving multiple classes. Among them binary approaches using one-vs-one and one-vs-all has gained a significant attention from the research community. They allow to divide multi-class problems into several easier-to-solve two-class sub-problems. In this study we develop an exhaustive empirical analysis to explore the possibility of empowering the one-vs-one scheme for multi-class imbalance classification problems with applying binary ensemble learning approaches. We examine several state-of-the-art ensemble learning methods proposed for addressing the imbalance problems to solve the pairwise tasks derived from the multi-class data set. Then the aggregation strategy is employed to combine the binary ensemble outputs to reconstruct the original multi-class task. We present a detailed experimental study of the proposed approach, supported by the statistical analysis. The results indicate the high effectiveness of ensemble learning with one-vs-one scheme in dealing with the multi-class imbalance classification problems.National Natural Science Foundation of China (NSFC) 61273204CSC Scholarship Program (CSC) 201406080059Polish National Science Center UMO-2015/19/B/ST6/01597Spanish Government TIN2014-57251-PAndalusian Research Plan P10-TIC-6858 P11-TIC-7765Consejo Nacional de Ciencia y Tecnologia (CONACyT) 32901
    • …
    corecore