95 research outputs found

    Inferring Anomalies from Data using Bayesian Networks

    Get PDF
    Existing studies on data mining has largely focused on the design of measures and algorithms to identify outliers in large and high dimensional categorical and numeric databases. However, not much stress has been given on the interestingness of the reported outlier. One way to ascertain interestingness and usefulness of the reported outlier is by making use of domain knowledge. In this thesis, we present measures to discover outliers based on background knowledge, represented by a Bayesian network. Using causal relationships between attributes encoded in the Bayesian framework, we demonstrate that meaningful outliers, i.e., outliers which encode important or new information are those which violate causal relationships encoded in the model. Depending upon nature of data, several approaches are proposed to identify and explain anomalies using Bayesian knowledge. Outliers are often identified as data points which are ``rare'', ''isolated'', or ''far away from their nearest neighbors''. We show that these characteristics may not be an accurate way of describing interesting outliers. Through a critical analysis on several existing outlier detection techniques, we show why there is a mismatch between outliers as entities described by these characteristics and ``real'' outliers as identified using Bayesian approach. We show that the Bayesian approaches presented in this thesis has better accuracy in mining genuine outliers while, keeping a low false positive rate as compared to traditional outlier detection techniques

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Methods for Reconstructing Networks with Incomplete Information.

    Full text link
    Network representations of complex systems are widespread and reconstructing unknown networks from data has been intensively researched in statistical and scientific communities more broadly. Two challenges in network reconstruction problems include having insufficient data to illuminate the full structure of the network and needing to combine information from different data sources. Addressing these challenges, this thesis contributes methodology for network reconstruction in three respects. First, we consider sequentially choosing interventions to discover structure in directed networks focusing on learning a partial order over the nodes. This focus leads to a new model for intervention data under which nodal variables depend on the lengths of paths separating them from intervention targets rather than on parent sets. Taking a Bayesian approach, we present partial-order based priors and develop a novel Markov-Chain Monte Carlo (MCMC) method for computing posterior expectations over directed acyclic graphs. The utility of the MCMC approach comes from designing new proposals for the Metropolis algorithm that move locally among partial orders while independently sampling graphs from each partial order. The resulting Markov Chains mix rapidly and are ergodic. We also adapt an existing strategy for active structure learning, develop an efficient Monte Carlo procedure for estimating the resulting decision function, and evaluate the proposed methods numerically using simulations and benchmark datasets. We next study penalized likelihood methods using incomplete order information as arising from intervention data. To make the notion of incomplete information precise, we introduce and formally define incomplete partial orders which subsumes the important special case of a known total ordering of the nodes. This special case lies along an information lattice and we study the reconstruction performance of penalized likelihood methods at different points along this lattice. Finally, we present a method for ranking a network's potential edges using time-course data. The novelty is our development of a nonparametric gradient-matching procedure and a related summary statistic for measuring the strength of relationships among components in dynamic systems. Simulation studies demonstrate that given sufficient signal moving using this procedure to move from linear to additive approximations leads to improved rankings of potential edges.PhDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113316/1/jbhender_1.pd

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Performance modelling with adaptive hidden Markov models and discriminatory processor sharing queues

    Get PDF
    In modern computer systems, workload varies at different times and locations. It is important to model the performance of such systems via workload models that are both representative and efficient. For example, model-generated workloads represent realistic system behaviour, especially during peak times, when it is crucial to predict and address performance bottlenecks. In this thesis, we model performance, namely throughput and delay, using adaptive models and discrete queues. Hidden Markov models (HMMs) parsimoniously capture the correlation and burstiness of workloads with spatiotemporal characteristics. By adapting the batch training of standard HMMs to incremental learning, online HMMs act as benchmarks on workloads obtained from live systems (i.e. storage systems and financial markets) and reduce time complexity of the Baum-Welch algorithm. Similarly, by extending HMM capabilities to train on multiple traces simultaneously it follows that workloads of different types are modelled in parallel by a multi-input HMM. Typically, the HMM-generated traces verify the throughput and burstiness of the real data. Applications of adaptive HMMs include predicting user behaviour in social networks and performance-energy measurements in smartphone applications. Equally important is measuring system delay through response times. For example, workloads such as Internet traffic arriving at routers are affected by queueing delays. To meet quality of service needs, queueing delays must be minimised and, hence, it is important to model and predict such queueing delays in an efficient and cost-effective manner. Therefore, we propose a class of discrete, processor-sharing queues for approximating queueing delay as response time distributions, which represent service level agreements at specific spatiotemporal levels. We adapt discrete queues to model job arrivals with distributions given by a Markov-modulated Poisson process (MMPP) and served under discriminatory processor-sharing scheduling. Further, we propose a dynamic strategy of service allocation to minimise delays in UDP traffic flows whilst maximising a utility function.Open Acces
    corecore