2,945 research outputs found

    Quantum Algorithms for Finding Constant-sized Sub-hypergraphs

    Full text link
    We develop a general framework to construct quantum algorithms that detect if a 33-uniform hypergraph given as input contains a sub-hypergraph isomorphic to a prespecified constant-sized hypergraph. This framework is based on the concept of nested quantum walks recently proposed by Jeffery, Kothari and Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and Santha [SODA'13] for similar problems over graphs. As applications, we obtain a quantum algorithm for finding a 44-clique in a 33-uniform hypergraph on nn vertices with query complexity O(n1.883)O(n^{1.883}), and a quantum algorithm for determining if a ternary operator over a set of size nn is associative with query complexity O(n2.113)O(n^{2.113}).Comment: 18 pages; v2: changed title, added more backgrounds to the introduction, added another applicatio

    Data Structures in Classical and Quantum Computing

    Get PDF
    This survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\'{o}s and Szemer\'{e}di and a data structure by Beame and Fich for predecessor search. We also prove results about their space complexity (how many bits are required) and time complexity (how many bits have to be read to answer a query). After that, we turn our attention to classical data structures with quantum access. In the quantum access model, data is stored in classical bits, but they can be accessed in a quantum way: We may read several bits in superposition for unit cost. We give proofs for lower bounds in this setting that show that the classical data structures from the first section are, in some sense, asymptotically optimal - even in the quantum model. In fact, these proofs are simpler and give stronger results than previous proofs for the classical model of computation. The lower bound for set membership was proved by Radhakrishnan, Sen and Venkatesh and the result for the predecessor problem by Sen and Venkatesh. Finally, we examine fully quantum data structures. Instead of encoding the data in classical bits, we now encode it in qubits. We allow any unitary operation or measurement in order to answer queries. We describe one data structure by de Wolf for the set membership problem and also a general framework using fully quantum data structures in quantum walks by Jeffery, Kothari and Magniez

    Quantum Algorithm for Triangle Finding in Sparse Graphs

    Full text link
    This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the recent O~(n5/4)\tilde O(n^{5/4})-query algorithm given by Le Gall [FOCS 2014] for triangle finding over dense graphs (here nn denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with O(n5/4ϵ)O(n^{5/4-\epsilon}) queries for some constant ϵ>0\epsilon>0 whenever the graph has at most O(n2c)O(n^{2-c}) edges for some constant c>0c>0.Comment: 13 page

    Graph Convolutional Neural Networks based on Quantum Vertex Saliency

    Full text link
    This paper proposes a new Quantum Spatial Graph Convolutional Neural Network (QSGCNN) model that can directly learn a classification function for graphs of arbitrary sizes. Unlike state-of-the-art Graph Convolutional Neural Network (GCNN) models, the proposed QSGCNN model incorporates the process of identifying transitive aligned vertices between graphs, and transforms arbitrary sized graphs into fixed-sized aligned vertex grid structures. In order to learn representative graph characteristics, a new quantum spatial graph convolution is proposed and employed to extract multi-scale vertex features, in terms of quantum information propagation between grid vertices of each graph. Since the quantum spatial convolution preserves the grid structures of the input vertices (i.e., the convolution layer does not change the original spatial sequence of vertices), the proposed QSGCNN model allows to directly employ the traditional convolutional neural network architecture to further learn from the global graph topology, providing an end-to-end deep learning architecture that integrates the graph representation and learning in the quantum spatial graph convolution layer and the traditional convolutional layer for graph classifications. We demonstrate the effectiveness of the proposed QSGCNN model in relation to existing state-of-the-art methods. The proposed QSGCNN model addresses the shortcomings of information loss and imprecise information representation arising in existing GCN models associated with the use of SortPooling or SumPooling layers. Experiments on benchmark graph classification datasets demonstrate the effectiveness of the proposed QSGCNN model

    Nesting statistics in the O(n)O(n) loop model on random planar maps

    Full text link
    In the O(n)O(n) loop model on random planar maps, we study the depth -- in terms of the number of levels of nesting -- of the loop configuration, by means of analytic combinatorics. We focus on the `refined' generating series of pointed disks or cylinders, which keep track of the number of loops separating the marked point from the boundary (for disks), or the two boundaries (for cylinders). For the general O(n)O(n) loop model, we show that these generating series satisfy functional relations obtained by a modification of those satisfied by the unrefined generating series. In a more specific O(n)O(n) model where loops cross only triangles and have a bending energy, we explicitly compute the refined generating series. We analyze their non generic critical behavior in the dense and dilute phases, and obtain the large deviations function of the nesting distribution, which is expected to be universal. Using the framework of Liouville quantum gravity (LQG), we show that a rigorous functional KPZ relation can be applied to the multifractal spectrum of extreme nesting in the conformal loop ensemble (CLEκ{\rm CLE}_{\kappa}) in the Euclidean unit disk, as obtained by Miller, Watson and Wilson, or to its natural generalization to the Riemann sphere. It allows us to recover the large deviations results obtained for the critical O(n)O(n) random planar map models. This offers, at the refined level of large deviations theory, a rigorous check of the fundamental fact that the universal scaling limits of random planar map models as weighted by partition functions of critical statistical models are given by LQG random surfaces decorated by independent CLEs.Comment: 71 pages, 11 figures. v2: minor text and abstract edits, references adde
    corecore