9,358 research outputs found

    Repotting the Geraniums: On Nested Graph Transformation Rules

    Get PDF
    We propose a scheme for rule amalgamation based on nested graph predicates. Essentially, we extend all the graphs in such a predicate with right hand sides. Whenever such an enriched nested predicate matches (i.e., is satisfied by) a given host graph, this results in many individual match morphisms, and thus many ā€œsmallā€ rule applications. The total effect is described by the amalgamated rule. This makes for a smooth, uniform and very powerful amalgamation scheme, which we demonstrate on a number of examples. Among the examples is the following, which we believe to be inexpressible in very few other parallel rule formalism proposed in the literature: repot all flowering geraniums whose pots have cracked.\u

    Modelling and Analysis Using GROOVE

    Get PDF
    In this paper we present case studies that describe how the graph transformation tool GROOVE has been used to model problems from a wide variety of domains. These case studies highlight the wide applicability of GROOVE in particular, and of graph transformation in general. They also give concrete templates for using GROOVE in practice. Furthermore, we use the case studies to analyse the main strong and weak points of GROOVE

    Verifying Monadic Second-Order Properties of Graph Programs

    Get PDF
    The core challenge in a Hoare- or Dijkstra-style proof system for graph programs is in defining a weakest liberal precondition construction with respect to a rule and a postcondition. Previous work addressing this has focused on assertion languages for first-order properties, which are unable to express important global properties of graphs such as acyclicity, connectedness, or existence of paths. In this paper, we extend the nested graph conditions of Habel, Pennemann, and Rensink to make them equivalently expressive to monadic second-order logic on graphs. We present a weakest liberal precondition construction for these assertions, and demonstrate its use in verifying non-local correctness specifications of graph programs in the sense of Habel et al.Comment: Extended version of a paper to appear at ICGT 201

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    Graph- versus Vector-Based Analysis of a Consensus Protocol

    Get PDF
    The Paxos distributed consensus algorithm is a challenging case-study for standard, vector-based model checking techniques. Due to asynchronous communication, exhaustive analysis may generate very large state spaces already for small model instances. In this paper, we show the advantages of graph transformation as an alternative modelling technique. We model Paxos in a rich declarative transformation language, featuring (among other things) nested quantifiers, and we validate our model using the GROOVE model checker, a graph-based tool that exploits isomorphism as a natural way to prune the state space via symmetry reductions. We compare the results with those obtained by the standard model checker Spin on the basis of a vector-based encoding of the algorithm.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Satisfaction, Restriction and Amalgamation of Constraints in the Framework of M-Adhesive Categories

    Get PDF
    Application conditions for rules and constraints for graphs are well-known in the theory of graph transformation and have been extended already to M-adhesive transformation systems. According to the literature we distinguish between two kinds of satisfaction for constraints, called general and initial satisfaction of constraints, where initial satisfaction is defined for constraints over an initial object of the base category. Unfortunately, the standard definition of general satisfaction is not compatible with negation in contrast to initial satisfaction. Based on the well-known restriction of objects along type morphisms, we study in this paper restriction and amalgamation of application conditions and constraints together with their solutions. In our main result, we show compatibility of initial satisfaction for positive constraints with restriction and amalgamation, while general satisfaction fails in general. Our main result is based on the compatibility of composition via pushouts with restriction, which is ensured by the horizontal van Kampen property in addition to the vertical one that is generally satisfied in M-adhesive categories.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Comparative Analysis of Five XML Query Languages

    Full text link
    XML is becoming the most relevant new standard for data representation and exchange on the WWW. Novel languages for extracting and restructuring the XML content have been proposed, some in the tradition of database query languages (i.e. SQL, OQL), others more closely inspired by XML. No standard for XML query language has yet been decided, but the discussion is ongoing within the World Wide Web Consortium and within many academic institutions and Internet-related major companies. We present a comparison of five, representative query languages for XML, highlighting their common features and differences.Comment: TeX v3.1415, 17 pages, 6 figures, to be published in ACM Sigmod Record, March 200

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach
    • ā€¦
    corecore